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2. ОБЗОРЫ  

УДК: 330.4, 519.8, 004.94 

2.1. Приложения тропической математики  
в экономике и теории игр 

Козырев А. Н., ЦЭМИ РАН, г. Москва, Россия 

Показаны возможности применения тропической (идемпотентной) математики ы решении 
экономических задач, где традиционные математические методы не работают или рабо-
тают плохо. Большое внимание уделено работам, где применение тропической матема-
тики не сводится к ускорению вычислительных процедур, а касается самой постановки 
задачи, её содержательного смысла. Таких работ, к сожалению, очень мало, хотя переход 
к цифровой экономике и экономике дачных, казалось бы, дает повод для применения тро-
пических методов, поскольку цифровые продукты обладают подходящими свойствами. 

1. Введение  
Главным мотивом, способствующим написанию этого обзора, было желание разобраться в совре-

менном состоянии исследований по теме, заявленной в заголовке статьи. Разумеется, были и другие 
причины, одна из них – стремление привлечь внимание наиболее продвинутой части нашей аудитории 
к математическим инструментам нового образца, ждущим своего применения в цифровой экономике. Не 
последнюю роль сыграла и ностальгия по настоящей математике в экономике, откуда она уходит. 

Принцип двойственности в математике и неиспользованные возможности применения математики 
в экономике – постоянные темы нашего журнала. На этот раз обе они раскрывается путем обзора до-
стижений тропической (идемпотентной) математики в области, где она применяется, по существу, ис-
ходной задачи, а не в качестве своего рода «допинга» в вычислительных методах, где идемпотентная 
математика уже давно нашла реальные применения. Предстоит поговорить и о реальных проблемах, 
сопутствующих развитию данного направления. При этом практически совсем не затрагиваются такие 
области как построение и обучение нейронных сетей, хотя здесь достижения тропической математики 
достаточно велики, причем именно с ними изначально связано появление прилагательного «тропиче-
ская», постепенно заменившего менее благозвучное – «идемпотентная». 

1.1. Деквантование Маслова, идемпотентная и тропическая математика 
В основе идемпотентной математики лежит замена обычных арифметических операций (сложения 

и умножения) новым набором базовых операций. Сложение заменяется операциями максимум или ми-
нимум, а умножение может быть заменено обычным сложением или остаться обычным умножение. При 
этом числовые поля (поле вещественных и комплексных чисел) заменяются идемпотентными полуколь-
цами и полуполями. Полукольцо получается, например, в том случае, если рассматриваются операции 
только над целыми числами, операция обратная умножению в этом случае отсутствует.  

Прилагательное «тропическая» прилепилось к данной области математики относительно недавно, 
но практически вытеснило классическое прилагательное «идемпотентная». Термин «тропические полу-
кольца» появился в информатике и теории алгоритмов для обозначения дискретной версии алгебры со 
сложением вместо умножения и операции максимум или минимум вместо сложения. Дискретные полу-
кольца этого типа были названы «тропическими» в честь бразильского специалиста по информатике и 
математике Имре Саймона, в знак признания его пионерской деятельности в данной области, см. (Лит-
винов, 2005). Затем это термин «тропический» стал применяться и к полуполям с теми же операциями. 

Основную парадигму идемпотентной математики (Литвинов, 2005) выражает идемпотентный 
принцип соответствия. Этот принцип тесно связан со знаменитым принципом соответствия Нильса 
Бора для квантовой теории (отсюда термин «деквантование»). Оказывается, между рядом важных, ин-
тересных и полезных конструкций и результатов обычной математики над полями и аналогичными кон-
струкциями и результатами над идемпотентными полуполями и полукольцами существует эвристиче-
ское соответствие. А это означает появление огромного поля исследований для профессиональных ма-
тематиков, сопоставимого со всей математикой над полями вещественных и комплексных чисел.  

Цитируемая выше и далее статья (Литвинов, 2005), представляемая как обзор, «практически не 
содержит строгих формулировок теорем и их доказательств, по словам её автора она является лишь 
кратким введением в деквантование Маслова, идемпотентную и тропическую математику». Список ци-
тируемой в ней литературы не претендует на полноту даже на дату его публикации. За дополнитель-
ными ссылками автор обзора отсылает к более раним обзорам и электронному архиву http://arXiv.org , 
что вполне логично. Такая рекомендация с благодарностью принимается. Однако надо заметить, что с 
мировоззренческой точки зрения, то есть для понимания места идемпотентной математики в науках эта 
статья – своего рода откровение, а потому к Деквантованию Маслова мы еще вернемся. 

http://arxiv.org/
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1.2. Идемпотентное сложение в экономике 
Парадоксальным образом практически все достижения в области применения идемпотентной ма-

тематики в экономике не связаны явным образом с особенностями цифровой экономики, хотя цифровые 
продукты – идеальный пример для демонстрации правил идемпотентной алгебры и арифметики, где 
сложение подчиняется правилу 1 + 1 = 1, а вычитание вообще не определено со всеми вытекающими 
отсюда последствиями. Помимо цифровых продуктов такими или близкими свойствами обладают изоб-
ретения, откуда происходит поговорка, – не надо изобретать деревянный велосипед». Тут надо сделать 
оговорку. Акцентировать внимание надо не на прилагательном «деревянный», а на бессмысленности 
заново изобретать то, что уже изобретено. Этим свойством до известной степени обладают знания или 
идеи, если понимать эти слова не в строгом математическом смысле, а на бытовом уровне, где они часто 
уподобляются свету свечи или лампы1. Но именно для цифровых продуктов идемпотентность сложения 
может пониматься буквально, поскольку тут возможно точное совпадение продуктов – бит в бит, а вычи-
тание не может быть определено. 

В экономической теории отсутствие вычитания для такого рода продуктов трактуется как неконку-
рентность в потреблении, а именно: «Потребление продукта одним из экономических агентов не мешает 
его потреблению другими». По уровню глубины понимания такая трактовка соответствует примерно 
арифметике мифического племени Нимбу-Юмбу, где были в ходу числа «один», «два» и «много».  

Без точной формализации, то есть без перевода на язык математики неконкурентность в потреб-
лении – слишком расплывчатое понятие в том смысле, что способов формализации известно несколько 
и далеко не все они удачные, причем в основном по причине неумения использовать принцип двойствен-
ности. Чаще всего неконкурентность в потреблении трактуется как потребление всеми членами группы 
(коллективное благо) или всеми членами общества (публичное благо) на одном уровне. Более разумный 
подход заключается в том, что продукт, именуемый «знание» или «технология» (Макаров, 1973), исполь-
зуется всеми участниками экономической системы (как потребителями) на уровне не выше, чем достиг-
нутый хоть кем-то из них как поставщиков. Такой подход вполне примерим к программному обеспечению, 
в частности, при формировании цен на программы (Козырев, 1989a, 1989b). В докладе на общем собра-
нии АН СССР, опубликованном в виде статьи (Макаров, 2003) вопрос ставится шире, о чем можно пого-
ворить отдельно. Но сегодня основные применения идемпотентной математики в экономике связаны 
отнюдь не со специфическими свойствами знаний, идей, цифровых продуктов, а с моделированием 
спроса на дискретные продукты и организацию аукционов с ассортиментом продуктов. На этих приме-
нениях в основном и сосредоточимся в дальнейшем. Также методы на основе идемпотентной матема-
тики широко применяются в управлении и вычислениях, но безотносительно к свойствам знаний. 

1.3. Источники 
Среди источников, используемых при подготовке настоящего обзора по нескольким причинам особое 

место занимают работы Элизабет Болдуин (Elizabeht Baldwin) и Пола Клемперера (Paul Klemperer). Во-
первых, им удалось применить идеи тропической математики как на практике (Klemperer, 2008), так и в 
экономической теории (Baldwin, Klemperer et al, 2014, 2019, 2021, 2024a, 2024b), причем и там, и там с 
успехом, о практике сказано в (Klemperer, 2008). Еще одна, возможно, не менее важная причина состоит в 
том, что они стараются донести свои идеи и результаты до экономистов, готовых учиться применению 
новых математических идей. В этом плане стоит обратить внимание на появившийся недавно сайт, 

 

 
1 Фраза, приписываемая Томасу Джефферсону: «Тот, кто получает идею от меня, пользуется ею, не обедняя меня; подобно тому, 

как получивший свет от моей лампы не погружает меня во тьму». 
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посвященный Product-Mix аукционам http://pma.nuff.ox.ac.uk/, то есть аукционам для продаж продуктов в 
ассортименте. На этом сайте представлены новые материалы по теме, включая научные публикации, 
методические материалы и даже компьютерные программы.  

На картинке ниже отражена основная суть вклада, внесенного Полом Клемперером в теорию и 
практику ассортиментных аукционов. О ней стоит поговорить подробнее. Но для начала не лишне заме-
тить, что тропическая прямая определяемая уравнением 𝑎𝑥 + 𝑏𝑦 = 𝑐 и условием неотрицательности, 
определяется тремя равенствами 𝑎𝑥 = 𝑐, 𝑏𝑦 = 𝑐 и 𝑎𝑥 = 𝑏𝑦. Этим условиям соответствует фигура ниже. 

 
В целом на рисунке изображена ситуация, когда на аукционе одновременно продается 2 продукта. 

Тропическая прямая разделяет неотрицательный ортант на три части. Прямоугольник ограничивает об-
ласть, где адекватных запросов со стороны покупателей нет. Участники аукциона, жаждущие получить 
что-то по таким низким ценам, не получат ничего. Луч, выходящий из правого верхнего угла, разделяет 
заявки на покупку, удовлетворяющие условиям продажи первого и второго продукта, Одна из заявок 
(номер 12) удовлетворяет тем и другим условиям, но на пределе.  

Разумеется, пример с двумя продуктами в некотором смысле игрушечный, но по тому же принципу 
Банком Англии в 2007 году был проведен аукцион по раздаче кредитов на астрономическую сумму в сто 
миллиардов фунтов стерлингов. Принимались заявки на кредиты с надежным обеспечение и с менее 
надежным. Потом была проведена та самая тропическая прямая, которая разделила заемщиков на тех, 
кто получил кредит по низкой ставке (надежное обеспечение), по высокой ставке (не очень надежное 
обеспечение) и тех, кто не получил ничего, поскольку хотел слишком много. 

В методическом обеспечении этого аукциона самое активное участие принимал Пол Клемперер, а 
чуть позже опубликовал очень интересный материал (Klemperer, 2008), где изложены не только методи-
ческие наработки, но и передана полная драматизма атмосфера события. Впрочем, некоторые детали 
конфиденциального характера ему пришлось изъять при публикации. Теоретическое осмысление ис-
пользуемого тогда подхода с применением математики первоначально было изложено в препринте 
(Baldwin, Klemperer, 2014), первая версия которого появилась в 2012 году, а потом тот же материал, но 
доработанный в соответствии с правилами (Baldwin, Klemperer, 2019), то есть с потерей не только пяти 
лет, но и цвета в диаграммах, был опубликован в журнале Эконометрика. Тут сложно удержаться от 
комментария о сроках и присутствии цвета в диаграммах. В нашем журнале цвет приветствуется, благо, 
что в цифровом формате это ничего не стоит. Но и при печати (по просьбе клиента) цвет оставляем. А 
еще надо с благодарностью упомянуть электронный архив http://arXiv.org , поскольку именно там появ-
ляются лучшие научные статьи, лишь через несколько лет они выходят в топовых журналах.  

Еще один интересный (с точки зрения применений в экономике) зарубежный источник – материалы 
– Tropical Mathematics and Economics | notes and problems from the HCM summer school May 9–13, 2016 – 
летней школы имени Хаусдорфа. Это мероприятие интересно не только тематикой, но и составом участ-
ников, среди них были цитируемые выше авторы статей по смешанным аукционам и Глеб Кошевой – 
один из россиян, на статьи которых эти авторы с восхищением ссылались. Там же была представлена 
работа (Crowell and Tran, 2016) о применении тропической геометрии в теории механизмов. 

В последующих работах (Baldwin, Klemperer et al, 2021, 2024a, 2024b) так или иначе обобщаются и 
усиливаются полученные ранее результаты, то есть прорыв в теории – это, прежде всего препринт 2014, 

http://pma.nuff.ox.ac.uk/
http://arxiv.org/
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года (Baldwin and Klemperer, 2014), где центральное место занимают принцип двойственности при опи-
сании спроса через пространство цен и теорема о равновесии на рынке дискретных продуктов, доказан-
ная с применением тропической геометрии, что оказалось проще, чем это было сделано ранее россий-
скими математиками В. Даниловым и Г. Кошевым без применения тропической математики.  

Из отечественных работ в первую очередь отметим упоминавшуюся выше статью Г.Л. Литвинова и 
совсем свежий обзор (Кривулин, 2025), откуда можно идти по ссылкам на более ранние работы. Приме-
чательно, что в статье Г.Л. Литвинова очень хорошо и наглядно представлена связь между идемпотент-
ной и обычной математикой, а также математики с физикой. В обзоре Н.К. Кривулина основное внимание 
уделено вкладу ленинградских, а позже Санкт-Петербуржских математиков, к числу которых относятся 
он сам и его ученики, а также ряд математиков, работавших в ЛОМИ АН СССР весте с Л.В Канторовичем 
еще до его отъезда в Новосибирск (в 1961), но оставшихся в Ленинграде и там развивавших идеи, ухо-
дящие корнями в довоенные и первые послевоенные годы.  

Если говорить о применении идей идемпотентности в математической экономике, то нельзя не упо-
мянуть статью (Макаров, 1973). В ней речь идет об идемпотентном межотраслевом балансе, интерпре-
тируемом как «балансе научных разработок» со ссылкой на предшествующую беседу с Л. В. Канторови-
чем, откуда можно сделать вывод, что у исходной идеи ленинградские корни, уходящие во времена, 
когда Канторович возглавлял отдел прикладных вычислений ЛОМИ АН СССР (до отъезда в Новоси-
бирск, то есть до 1961 года), а рядом с ним работали Н.Н. Воробьёв, А. А. Корбут и И.В. Романовский, 
внесшие свой вклад в развитие идемпотентной математики как математической дисциплины. Именно 
Н.Н. Воробьев развил версию идемпотентной линейной алгебры с приложениями в теории игр и мате-
матической экономики, и предвидел многие аспекты будущей расширенной теории. Для обозначения 
идемпотентных полуколец и идемпотентной математики он использовал термины “экстремальные ал-
гебры” и “экстремальная математика”. К сожалению, как отмечено в (Литвинов, 2005), идеи Н. Н. Воро-
бьева в свое время не получили широкой известности, поэтому его терминология не прижилась и сейчас 
почти не используется. При этом ссылки на его статьи есть в современных работах по математической 
экономике с применением тропической математики (Крайнов, Матвеенко, 2006).  

Очень забавный факт – Балдуин и Клемперер ссылаются на работу (Matveenko, 2014), доказывая 
свой приоритет в применении тропической математики непосредственно к экономике. Первая версия их 
работы 2014 года появилась в 2012 году. О более ранних работах Владимира Матвеенко по экономиче-
ской тематике, например (Матвеенко, 2012), они, разумеется, не знали, поскольку они публиковались на 
русском языке. А работы В.И. Данилова по эконмическому равновесию они считали чистой математикой, 
что в целом верно. Тут сложно удержаться от сожаления по поводу все большего расхождения между 
математикой, которой занимаются российские математики, публикуя свои результаты в основном на ан-
глийском языке за границей, что по-прежнему поощряется всей нашей системой научного труда. 

В отечественной литературе фундаментальный вклад в развитие тропической математики внесли 
труды представителей московской научной школы под руководством академика В. П. Маслова (работы 
В. Н. Колокольцова, Г. Л. Литвинова, С. Н. Сергеева, Г. Б. Шпиза и др.), посвященные развитию тропи-
ческого анализа — математического анализа полумодулей функций со значением в полукольце с идем-
потентным сложением. Вопросы алгебраической теории тропических полуколец интенсивно изучались 
в работах Е. М. Вечтомова и А. Э. Гутермана. В работах С. Л. Блюмина и его коллег язык и методы 
тропической алгебры успешно применялись для развития алгебраической теории решения задач моде-
лирования и управления технологическими и производственными процессами и системами. 

Вслед за работами Н. Н. Воробьева, А. А. Корбута, И. В. Романовского, имевшими большое значе-
ние для становления тропической математики как новой области науки, санкт-петербургские математики 
О. Я. Виро, Д. Ю. Григорьев, И. В. Итенберг, Г. Б. Михалкин и др. сыграли ключевую роль в формирова-
нии и развитии тропической геометрии, которая представляет собой раздел алгебраической геометрии, 
определенной над тропическим полуполем. В экономико-математических работах В. Д. Матвеенко язык 
и методы тропической математики были впервые использованы для построения и анализа моделей эко-
номической динамики и роста (Кривулин, 2025). Но, если говорить совсем точно, речь идет опять-таки 
не об экономике, а о математике с использованием экономической лексики. Именно в эту сторону пошла 
математическая экономика, определив свою задачу как проверку идей экономической теории на непро-
тиворечивость.  

Надо отметить, что отличием ленинградской (потом петербуржской) школы состоит, ели не в отсут-
ствии такого снобизма, то присутствует в гораздо меньшей степени. Есть потребность доводить иссле-
дование до применения. Эта традиция идет от Эйлера, она была присуща С.Л. Соболеву и Л.В. Канто-
ровичу, которые могли заниматься чистой математикой, но не чурались и приложений. То же присуще и 
тем, ко продолжает работу в том направлении, которое идет от работ по идемпотентной (тропической) 
математики середины 60-х, начала 70-х годов, продолжает исследования, начатые Н. Н. Воробьевым, 
А. А. Корбутом и И. В. Романовским, связано с применением моделей и методов тропической алгебры 
для решения задач оптимизации и исследования операций. Разработке и исследованию методов реше-
ния задач тропической оптимизации посвящен ряд работ, опубликованных за последние два десятиле-
тия Н. К. Кривулиным, И. В. Романовским и их коллегами.  
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Поскольку в обзоре использованы материалы из разных источников и разные по стилю, обозначе-
ния в разных разделах могут различаться, нумерация рисунков, заимствованных из (Литвинов, 2016), 
(Crowell and Tran, 2016)  (Baldwin, Klemperer, 2014) и (Klemperer, 2008) привязана к разделам 

2.Идемпотентная математика и деквантование Маслова  
В основе идемпотентной математики лежит замена обычных арифметических операций новым 

набором базовых операций (такими как максимум или минимум), при этом числовые поля заменяются 
идемпотентными полукольцами и полуполями.  

2.1. Варианты полуполей 
Известно четыре варианта идемпотентной математике над полуполями в качестве сложения может 

рассматриваться либо операция максимума, обозначаемая символом ⨁̅, либо операция минимума, обо-

значаемая как ⨁. В качестве умножения может рассматриваться обычное умножение или сложение. 

Если в качестве умножения рассматривается обычное умножение, то элементы полуполя – неотрица-
тельные числа, нулем служит обычный ноль. Если в качестве тропического умножения используется 
обычное сложение, то элементы полуполя – все вещественные числа. В качестве нуля используется 

либо −∞, если сложение – операция максимума, либо ∞, если сложение – операция минимума.  
Типичные примеры –- так называемые алгебра макс-плюс ℝ𝑚𝑎𝑥   и алгебра мин-плюс ℝ𝑚𝑖𝑛. Они опре-

деляются достаточно просто. Пусть ℝ – поле вещественных чисел. Тогда ℝ𝑚𝑎𝑥 = ℝ ∪ {−со} с операци-

ями ⨁̅ и ⨀, где 𝑥⨁̅𝑦 = 𝑚𝑎𝑥{𝑥, 𝑦}, 𝑥⨀𝑦 = 𝑥 + 𝑦. Аналогично ℝ𝑚𝑖𝑛 = ℝ ∪ {+∞} с операциями ⨁ и ⨀, где  

𝑥⨁𝑦 = 𝑚𝑖𝑛{𝑥, 𝑦}. Новое сложение является идемпотентной операцией, т.е. 𝑥⨁̅𝑥 = 𝑥 и 𝑥⨁𝑥 = 𝑥 для всех 𝑥. 

Начиная с классической работы (Kleene, 1956), многие авторы использовали идемпотентные полу-
кольца и матрицы над этими полукольцами для решения ряда прикладных задач дискретной математики 
и информатики. Современный идемпотентный анализ (или идемпотентное исчисление, или идемпо-
тентная математика) был разработан В. П. Масловым и его сотрудниками в восьмидесятых годах в 
Москве, см., например, работы (Kolokoltsov and & Maslov, 1997; Литвинов, Маслов, Шпиц, 1998б 1999, 
2001). Некоторые предварительные результаты сформулировали Э. Хопф и Г. Шоке, но, как заметил 
Н.Н. Воробьев, там даже речи не шло о двойственности.  

Идемпотентную математику можно рассматривать как результат деквантования традиционной ма-
тематики над числовыми полями, при котором постоянная Планка Н стремится к нулю, принимая мни-
мые значения. Такая точка зрения была представлена Г. Л. Литвиновым и В. П. Масловым в работах 
(Litvinov and Maslov, 1965, 1996). Иначе говоря, идемпотентная математика является асимптотической 
версией традиционной математики над полями вещественных и комплексных чисел. 

2.2. Идемпотентный принцип соответствия 
Основную парадигму идемпотентной математики выражает идемпотентный принцип соответ-

ствия. Этот принцип тесно связан со знаменитым принципом соответствия Нильса Бора для квантовой 
теории. Оказывается, что существует эвристическое соответствие между рядом важных, интересных и 
полезных конструкций и результатов обычной математики над полями и аналогичными конструкциями и 
результатами над идемпотентными полуполями и полукольцами (полуполями и полукольцами с идем-
потентными сложением). 

Систематическое и последовательное использование идемпотентного принципа соответствия при-
водит к многообразным результатам, часто весьма неожиданным. В результате, наряду с традиционной 
математикой, возникает ее “теневая” идемпотентная версия. Эта “теневая” версия так же связана с тра-
диционной математикой, как классическая физика с физикой квантовой, см. рис. 2.1. 

 
Рис. 2.1. Связь между идемпотентной и традиционной математикой. 

Источник – (Литвинов, 2016) 
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Во многих отношениях идемпотентная математика проще традиционной. Однако переход от тради-
ционных конструкций и результатов к их идемпотентным аналогам часто является нетривиальным. 

2.3. Полукольца, полуполя и деквантование 
Пусть на множестве 𝑆 заданы две алгебраические операции: сложение ⨁ и умножение ⨀. Говорят, 

что на множестве S задано полукольцо, если выполняются следующие условия: 
• сложение ⨁ и умножение ⨀ ассоциативны; 

• сложение ⨀ коммутативно; 
• умножение ⨀ дистрибутивно относительно сложения ⨁: 

𝑥⨀(𝑦⨁𝑧) = (𝑥⨀𝑦)⨁(𝑥⨀𝑧) 
и 

(𝑥⨁𝑦) ⨀𝑧 = (х⨀𝑧)⨁(у⨀𝑧) 

для любых 𝑥, 𝑦, 𝑧 ∈ 𝑆. 

Единицей полукольца 𝑆 называется такой элемент 1 ∈ 𝑆, что 1⨀𝑥 = 𝑥⨀1 = 𝑥 для всех 𝑥 ∈ 𝑆. Нулем 

полукольца 𝑆 называется такой элемент 0 ∈ 𝑆, что 0 ≠ 1 и 0⨁𝑥 = 𝑥, 0⨁𝑥 = 𝑥⨁0 = 0 для всех 𝑥 ∈ 𝑆. Полу-
кольцо S называется идемпотентным полукольцом, если 𝑥⨁𝑥 = 𝑥 для всех 𝑥 ∈ 𝑆. Полукольцо S с эле-

ментами 0 и 1 называется полуполем, если для любого ненулевого элемента множества 𝑆 существует 
обратный элемент. 

Рассмотрим поле вещественных чисел 𝐑 и полуполе всех неотрицательных вещественных чисел 
𝐑+ (относительно обычных операций сложения и умножения). Замена переменных 𝑥 ⟼ 𝑢 = ℎ𝑙 ln 𝑥, ℎ >
0, задает отображение  

Φℎ: 𝐑+ → 𝑆 = 𝐑⋃{−∞} 
Перенесем операции сложения и умножения из 𝐑 в 𝑆 с помощью отображения Φℎ, а именно, пусть  

𝑢⨁ℎ𝑣 = ℎ ln 𝑒𝑥𝑝(𝑢/ℎ) + 𝑒𝑥𝑝(𝑣/ℎ), 
𝑢⨀𝑣 = 𝑢 + 𝑣,   𝟎 = −∞ = Φℎ(0), 𝟏 = 0 = Φℎ(1) 

Таким образом 𝑆 приобретает структуру полукольца 𝐑(ℎ), изоморфного 𝐑+; см.рис. 2.1. 

Несложно проверить, что 𝑢⨁ℎ𝑣 → 𝑚𝑎𝑥{𝑢, 𝑣} при ℎ → 0 и что 𝑆 образует полукольцо относительно 
сложения 𝑢⨁𝑣 = 𝑚𝑎𝑥{𝑢, 𝑣} и умножения 𝑢⨀𝑣 = 𝑢 = 𝑣, с нулевым элементом ∞ и единицей 𝟏 = 0. Обо-

значим это полукольцо через ℝ𝑚𝑎𝑥 оно идемпотентно, так как 

𝑢⨁𝑢 = 𝑢 для всех элементов. При этом полукольцо R𝑚𝑎𝑥 явля-
ется полуполем. Аналогия с процедурой квантования здесь оче-
видна, параметр ℎ играет роль постоянной Планка, поэтому по-

луполе 𝐑+ можно рассматривать как “квантовый” объект, а по-

лукольцо ℝ𝑚𝑎𝑥 может рассматриваться как результат его 

“деквантования”. Аналогичная процедура для ℎ < 0 дает полу-

кольцо ℝ𝑚𝑖𝑛 = 𝐑 ∪ {+∞} с операциями ⨁ = 𝑚𝑖𝑛, ⨀ = +; в этом 
случае 0=+∞, 𝟏 = 0. Полукольца ℝ𝒎𝒂𝒙 и 𝐑𝑚𝑖𝑛 изоморфны. Пе-

реход к ℝ𝒎𝒂𝒙 или 𝐑𝑚𝑖𝑛 называется деквантованием Маслова. 
Понятно, что соответствующий переход от поля комплексных С 

или вещественных R чисел к ℝ𝑚𝑎𝑥 осуществляется при помощи 
деквантования Маслова и отображения 𝑥 ↦ |𝑥|. Такой переход 
также часто называют деквантованием Маслова (Литвинов, 

2005).  Идемпотентное полукольцо 𝐑 ∪ {−∞} ∪ {+∞} с операци-

ями ⨁ = 𝒎𝒂𝒙, ⨀ = 𝒎𝒊𝒏 может быть получено в результате “вто-

ричного деквантования” полей С, R или полуполя ℝ𝑚𝑎𝑥. Так 
называемое идемпотентное деквантование является обоб-
щением деквантования Маслова; это переход от полей к идем-
потентным полуполям и полукольцам в математических кон-
струкциях и ре идемпотентное деквантование является обобщением деквантования Маслова; это пере-
ход от полей к идемпотентным полуполям и полукольцам в математических конструкциях и результатах. 

2.4. Терминология: тропические полукольца и тропическая математика 
Термин “тропические полукольца” появился в информатике и теории алгоритмов для обозначения 

дискретной версии алгебры ℝ𝑚𝑎𝑥 или ℝ𝑚𝑖𝑛 и их подалгебр; дискретные полукольца этого типа были 
названы “тропическими” Домиником Перрэном в честь бразильского специалиста по информатике и мате-
матике Имре Саймона, в знак признания его пионерской деятельности в данной области, см. [Pin, 1998]. 

В дальнейшем ситуация и терминология изменились. Для большинства современных авторов “тро-

пический” означает “над полуполями ℝ𝑚𝑎𝑥  или ℝ𝑚𝑖𝑛, а тропические полукольца – это идемпотентные 

полуполя ℝ𝑚𝑎𝑥 и ℝ𝑚𝑖𝑛 В этом же смысле часто используются термины “макс-плюс” и “мин-плюс” . В 

настоящее время термин “тропическая математика” обычно означает “математика над полуполями ℝ𝑚𝑎𝑥 

или ℝ𝑚𝑖𝑛, см., а термины "тропикализация" и "тропификация" (Kirillov А. N. (2001) в точности означают 
деквантование и квантование в описанном выше смысле. В любом случае, тропическая математика яв-
ляется естественной и очень важной частью идемпотентной математики. Многие известные конструкции 

Рисунок 2.2. Переход от 𝐑+ к 𝐑(𝒉).  
На вставке: то же для малых h. 

Источник – (Литвинов, 2016) 
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и результаты идемпотентной математики были повторены в рамках тропической математики (и особенно 
в тропической линейной алгебре). 

Заметим, что Н.Н. Воробьев в своих статьях развил некоторую версию идемпотентной линейной 
алгебры (с важными приложениями, в том числе для теории игр и математической экономики). Он пред-
видел многие аспекты будущей расширенной теории. Для обозначения идемпотентных полуколец и 
идемпотентной математики он использовал термины “экстремальные алгебры” и “экстремальная мате-
матика”. К сожалению, идеи Н. Н. Воробьева в свое время не получили широкой известности, поэтому 
его терминология не прижилась и сейчас почти не используется. 

2.5. Идемпотентная и линейная алгебра 
Автором первой известной работы по идемпотентной линейной алгебре считается И. Клини. В его 

работе (Kleene, 1956) рассматриваются системы линейных алгебраических уравнений над несколько эк-
зотическим идемпотентным полукольцом всех формальных языков с фиксированным конечным алфа-
витом. Однако идеи И. Клини оказались весьма общими и универсальными. После этого десятки авторов 
изучали матрицы с коэффициентами, принадлежащими идемпотентным полукольцам, а также соответ-
ствующие приложения к дискретной математике, информатике, языкам программирования, лингвисти-
ческим задачам, конечным автоматам, проблемам оптимизации на графах, теории оптимального управ-
ления, дискретным системам событий и сетям Петри, стохастическим системам, оценке производитель-
ности компьютеров, вычислительным проблемам и т.д. Эти направления хорошо известны и широко 
представлены в литературе, см., например, (Дудников, Самборский, 1991), (Litvinov and Maslova, 2000), 
(Litvinov and Maslov (Eds.), 2005), (Воробьёв, 1963, 1967, 1970). 

Идемпотентная абстрактная алгебра пока не так хорошо развита, хотя с формальной точки зрения 
теория решеток, теория упорядоченных групп и полугрупп входят в состав идемпотентной алгебры. Тем 
не менее, имеется много интересных результатов и приложений, см., например, (Шпиз, 2000). 

В частности, идемпотентная версия основной теоремы алгебры сформулирована в (Шпиз, 2000) 
для радикабельных идемпотентных полуколец (полукольцо 𝐴 называется радикабельным, если уравне-

ние 𝑥𝑛 = 𝑎 имеет решение 𝑥 ∈ 𝐴 для любого 𝑎 ∈ 𝐴 и любого положительного целого 𝑛). Доказано, что 

ℝ𝑚𝑎𝑥 и другие радикабельные полуполя алгебраически замкнуты в естественном смысле (Шпиз, 2000). 
Известно четыре варианта идемпотентной математике над полуполями в качестве сложения может 

рассматриваться либо операция максимума, обозначаемая символом ⨁̅, либо операция минимума, обо-

значаемая как ⨁. В качестве умножения может рассматриваться обычное умножение или сложение. 

Если в качестве умножения рассматривается обычное умножение, то элементы полуполя – неотрица-
тельные числа, нулем служит обычный ноль. Если в качестве тропического умножения используется 
обычное сложение, то элементы полуполя – все вещественные числа. В качестве нуля используется 
либо −∞, если сложение – операция максимума, либо ∞, если сложение – операция минимума.  

В последние годы особое внимание привлекают к себе вопросы тропической алгебраической гео-
метрии, которые будут рассмотрены ниже. 

3. Двойственность в тропической алгебре и геометрии 
В этом разделе изложение следует препринту (Crowell and Ttran, 2016) находящемуся в открытом 

доступе https://arxiv.org/pdf/1606.04880v1. Основное внимание уделяется двойственности, начиная с са-
мых простых примеров. При этом круг тропических алгебр сужается до двух: max-plus и min-plus на ℝ. 

Алгебра max-plus (ℝ, ⨁̅, ⨀) определяется тропическим сложением 𝑎⨁̅𝑏: = 𝑚𝑎𝑥(𝑎, 𝑏) и тропическим умно-

жением 𝑎⨀𝑏: = 𝑎 + 𝑏. Алгебра min-plus (ℝ, ⨁, ⨀) определяется как 𝑎⨁𝑏: = 𝑚𝑖𝑛(𝑎, 𝑏), 𝑎⨀𝑏: = 𝑎 + 𝑏. Эти ал-

гебры изоморфны через отображение 𝑥 ↦ −𝑥, поэтому теоремы, справедливые для одной, имеют оче-
видные аналоги в другой. В качестве условного обозначения также используются обозначения с подчер-
киванием, такие как ⊕,⊙, ℋ, . .. для обозначения объектов, определенных с помощью арифметики в тро-

пической алгебре с min-plus, и обозначения с заглавной буквы ⊕,⊙, ℋ, . .. для обозначения тех же объек-
тов, определенных с помощью арифметики в тропической алгебре max-plus. 

3.1. Основы. 
Пусть 𝐿 ∈ ℝ𝑚×𝑚 – матрица, 𝑥 ∈ ℝ𝑚 – вектор, а 𝜆 ∈ ℝ – скаляр. Как обычно, скалярно-векторное умно-

жение определяется поэлементно 𝜆⨀𝑥 ∈ ℝ𝑚, (𝜆⨀𝑥)𝑖 = 𝜆 + 𝑥𝑖 для 𝑖 ∈ [𝑚] = {1,2, … , 𝑚}. Матрично-вектор-

ное умножение определяется 𝐿⨀𝑥 ∈ ℝ𝑚, (𝐿⨀𝑥)𝑖 =  𝑚𝑖𝑛𝑗∈[𝑚]{𝐿𝑖𝑗 + 𝑥𝑗} для 𝑖 ∈ [𝑚]. Пара (𝑥, 𝜆) называется 

парой собственный вектор-собственное значение 𝐿, если  

𝐿⨀𝑥 = 𝜆⨀𝑥 

или явно, 

min
  𝑗∈[𝑚]

{𝐿𝑖𝑗 + 𝑥𝑗} = 𝜆 + 𝑥𝑖 , 𝑖 ∈ [𝑚] 

Согласно теореме 2.1 из (Cuninghame-Green, 1962), матрица 𝐿 ∈ ℝ𝑚×𝑚 имеет единственное тропи-
ческое собственное значение. Таким образом, можно говорить о тропическом собственном значении 
матрицы 𝐿, обозначаемом 𝜆(𝐿). Собственное тропическое пространство 𝐿 ∈ ℝ𝑚×𝑚 равно 

𝐸𝑖𝑔(𝐿) = {𝑥 ∈ ℝ𝑚: 𝐿⨀𝑥 = 𝜆(𝐿)⨀𝑥}. 

https://arxiv.org/pdf/1606.04880v1


       Козырев А.Н. Приложения тропической математики в экономике и теории игр 
 

43 

Тропическое сложение идемпотентно: 𝑎⨁𝑎 = 𝑎 для 𝑎 ∈ ℝ. В частности, здесь нет вычитания. Это 

отличает тропическую линейную алгебру от ее классического аналога. Например, детерминант 𝐴 равен 
её перманенту, который равен 

𝑡𝑑𝑒𝑡(𝐿) =⊕𝜎∈𝑆𝑚
𝐿1𝜎1

⊙ ⋯ ⊙ 𝐿𝑚𝜎𝑚
= min

𝜎∈𝑆𝑚

(𝐿1𝜎1
+ ⋯ + 𝐿𝑚𝜎𝑚

) 

Однако, поскольку тропические уравнения представляют собой всего лишь набор классических ли-
нейных уравнений и неравенств, многие тропические объекты могут быть вычислены с помощью линей-
ного программирования. В статье (Crowell and Tram, 2016) приведены три примера, имеющих отношение 
к этой математической технике: вычисление тропического детерминанта (определителя), тропического 
собственного значения и тропического собственного пространства. Они приводятся ниже. 

3.2. Тропический детерминант.  
Оценка тропического детерминанта означает решение классической задачи о назначении. Пред-

ставьте, что есть 𝑚 рабочих мест и 𝑚 работников, и каждому работнику нужно назначить ровно одну 

работу. Пусть 𝐿𝑖𝑗 – плата работнику 𝑖 за выполнение работы 𝑗. Компания хочет найти задание с наимень-

шими затратами. Таким образом, минимальные затраты равны 𝑡𝑑𝑒𝑡(𝐿). 

Хотя существует 𝑚! возможных соответствий, чтобы найти оптимальное соответствие, нет необхо-
димости оценивать их все. Классическая задача о назначении, описанная выше, представляет собой 
линейную программу над многогранником перестановок и может быть эффективно решена с помощью 
венгерского метода (Kuhn, 1955). 

3.3. Тропические собственные значения. 
Теорема 3.1 (Cuninghame-Green, 1962). Матрица 𝐿 ∈ ℝ𝑚×𝑚 имеет единственное собственное 

значение 𝜆(𝐿), которое равно минимальному среднему весу всех простых направленных циклов на 𝑚 

вершинах. 
Средний вес цикла – это сумма ребер, деленная на количество ребер в цикле. Хотя простых циклов 

экспоненциально много, для вычисления 𝜆(𝐿) нет необходимости проверять их все. Вычисление соб-

ственного значения min-plus и max-plus – это линейные программы над многогранником нормализован-
ного цикла, для которых существует эффективное решение. 

3.4. Тропическое собственное пространство 
Параллельно классической линейной алгебре тропическое собственное пространство матрицы 

𝑚 × 𝑚 генерируется не более чем 𝑚 экстремальными тропическими собственными векторами 𝑣1, . . . , 𝑣𝑚, 

в том смысле, что любой 𝑥 ∈ 𝐸𝑖𝑔(𝐿) может быть записан как 

𝑥 = 𝑎1⨀𝑣1⨁ … ⨁𝑎𝑚⨀𝑣𝑚 

для некоторых 𝑎1, . . . , 𝑎𝑚 ∈ ℝ. Как множества, тропические собственные пространства являются политро-
пами (Joswig and Kulas, 2010), названными так потому, что такое множество является одновременно 
тропическим и обычным многогранником, см. раздел 3.8 ниже. Чтобы найти 𝐸𝑖𝑔(𝐿), сначала вычитается 

𝜆(𝐿) поэлементно из 𝐿 и сводится к случаю 𝜆(𝐿) = 0. В этом случае численно может быть найдено зна-

чение кратчайшего пути от 𝑖 до 𝑗 на 𝐺(𝐿). Абстрактно, эти векторы являются векторами-столбцами 

звезды Клини из 𝐿. В следующем определении 𝐼 обозначает единичную матрицу min-plus с нулями на ее 
диагонали и +∞ в других местах. 

Определение 3.2. Для 𝐿 ∈ ℝ𝑚×𝑚 с 𝜆(𝐿) = 0 звезда Клини из 𝐿, обозначаемая 𝐿∗, равна 

𝐿∗ = 𝐼⨁(⨁𝑖=1
𝑚 𝐿⨀𝑖) 

Матрица 𝑀 ∈ ℝ𝑚×𝑚 называется звездой Клини, если 𝑀∗ = 𝑀. 

Теорема 3.3. Для 𝐿 ∈ ℝ𝑚×𝑚 пусть 𝑐1 , . . . , 𝑐𝑚 − векторы столбцов (𝐿 − 𝜆(𝐿))∗. Тогда {𝑐1, . . . , 𝑐𝑚} – мно-

жество тропических образующих 𝐸𝑖𝑔(𝐿). 

По этой причине звезды Клини играют фундаментальную роль в теории тропического спектра и, 
таким образом, были исследованы многими математиками. Они также известны как сильные транзитив-
ные замыкания (Butkovič, 2012, §1.6.2.1) или матрица расстояний (Murota,2003). Звезды Клини и, следо-
вательно, тропические генераторы тропического собственного пространства могут быть вычислены пу-
тем умножения и сложения тропических матриц. 

3.5. Тропический проективный тор.  
Во многих экономических задачах важны только относительные оценки или цены, а не их абсолют-

ные значения. В тропических терминах это означает, что оценки и цены являются точками в тропическом 
проективном торе 𝕋ℙ𝑚−1. Это должно быть наше окружающее пространство, когда мы говорим о геомет-

рии в задачах проектирования механизмов. 
Множество 𝑆 ⊂ ℝ𝑚 замкнуто при тропическом умножении на скаляр, если для всех 𝑎 ∈ ℝ мы имеем 

𝑎⨀𝑥 = (𝑎 + 𝑥1, . . . , 𝑎 + 𝑥𝑚) ∈ 𝑆 всякий раз, когда 𝑥 ∈ 𝑆. Примеры включают образ матрицы 𝐿 ∈ ℝ𝑚×𝑚 

𝐼𝑚(𝐿) = {𝑦 ∈ ℝ: 𝐿⨀𝑥, 𝑥 ∈ ℝ𝑚
}, 
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или его тропическое собственное пространство 𝐸𝑖𝑔(𝐿). Достаточно рассмотреть такое множество по мо-

дулю тропического умножения на скаляр. Определим отношение эквивалентности ~ на ℝ𝑚 с помощью  
(1)           𝑥~𝑦 ⟺ 𝑥 = 𝑎𝑦       𝑎 ∈ ℝ𝑚 

Пространство ℝ𝑚 по модулю ~ называется тропическим проективным тором или тропическим аф-

финным пространством 𝕋ℙ𝑚−1. Явно, это ℝ𝑚 по модулю прямой, охватываемой единичным вектором 

𝕋ℙ𝑚−1 ≡ ℝ𝑚/ℝ ∙ (1, ⋯ ,1). 
Обратите внимание, что тропическое умножение на скаляр не зависит от max или min, поэтому в 

одном и том же пространстве 𝕋ℙ𝑚−1 можно говорить как о max-plus, так и о min-plus геометрических 
объектах, таких как тропические многогранники и размещение тропических гиперплоскостей. 

Мы следуем соглашению в (Joswig and Kulas, 2010; Maclagan and Sturmfels, 2015) и идентифици-
руем 𝕋ℙ𝑚−1 с ℝ𝑚−1, нормализуя первую координату с помощью следующего гомеоморфизма. 

(2)    𝕋ℙ𝑚−1 ↦ ℝ𝑚−1, [(𝑥1, ⋯ , 𝑥𝑚)] ⟼ (𝑥2 − 𝑥1, ⋯ , 𝑥𝑚 − 𝑥1)   

В частности, мы используем это отображение для визуализации множеств в 𝕋ℙ2. Конечно, можно 

было бы выбрать другие нормализации, такие как установка 𝑖-й координаты равной нулю для некоторого 

другого 𝑖 ∈  [𝑚], или потребовать, чтобы сумма координат была постоянной. 

Часто проверка того, замкнуто ли множество 𝑆 ⊆ ℝ𝑚 при тропическом умножении на скаляр, явля-

ется простой. В таких случаях будем писать 𝑆 ⊆ 𝕋ℙ𝑚−1 без явного уведомления. В частности, будем 

записывать элемент 𝑥 ∈ 𝕋ℙ𝑚−1 в качестве вектора в ℝ𝑚. 

3.6. Тропические многогранники и гиперплоскости.  
Центральными объектами в тропической выпуклой геометрии являются тропические многогранники 

и тропические гиперплоскости. Тропический многогранник содержит все тропические отрезки прямой 
(тропическую выпуклую оболочку) между любыми двумя его точками. Для каждого тропического много-
гранника существует порождающих его конечный минимальный набор точек. Тропический двойственный 
многогранник можно представить в виде пересечений тропических гиперплоскостей. Давайте уточним. 

Определение 3.4. Тропический многогранник min-plus, порожденный векторами {𝑐1 , . . . , 𝑐𝑚}⊂ℝ𝑚, равен 

𝑡𝑐𝑜𝑛𝑣(𝑐1, ⋯ , 𝑐𝑚) = {𝑧1 ⊙ 𝑐1⨁ ⋯ ⨁𝑧𝑚 ⊙ 𝑐𝑚: 𝑧 ∈ ℝ𝑚} 

Пусть 𝐿 – матрица, 𝑖-й столбец которой равен 𝑐𝑖. Переписывая, получаем 

𝐼𝑚(𝐿) = 𝑡𝑐𝑜𝑛𝑣(𝑐1, ⋯ , 𝑐𝑚) 

Сразу видно, что 𝑡𝑐𝑜𝑛𝑣(𝑐1, . . . , 𝑐𝑚) ⊂ 𝕋ℙ𝑚−1 , и что для констант 𝑎1, . . . , 𝑎𝑚 ∈ ℝ, 

𝑡𝑐𝑜𝑛𝑣(𝑎1 ⊙ 𝑐1, ⋯ , 𝑎𝑚 ⊙ 𝑐𝑚) = 𝑡𝑐𝑜𝑛𝑣(𝑐1 , ⋯ , 𝑐𝑚) 

Таким образом, будем работать в 𝕋ℙ𝑚−1, рассматривая как {𝑐1 , . . . , 𝑐𝑚}, так и их тропическую выпук-

лую оболочку как подмножество 𝕋ℙ𝑚−1. Обратите внимание, что для конкретного тропического много-

гранника 𝑃 матрица 𝐿, такая что 𝐼𝑚(𝐿) = 𝑃, определена только с точностью до тропических масштабов 

ее столбцов. Если не указано иное, мы изменим масштаб матрицы 𝐿 так, чтобы на её диагонали были 

нули. Это связывает 𝑃 с единственной матрицей 𝐿. 

Для остальной части этого раздела задана матрица 𝐿 ∈ ℝ𝑚×𝑚. Пусть 𝑐𝑖 обозначает ее 𝑖-й вектор-
столбец. Тропический многогранник 𝐼𝑚(𝐿) также можно рассматривать в терминах его тропических опор-

ных гиперплоскостей. 
Определение 3.5. Для точки 𝑝 ∈ ℝ𝑚, 𝑗 ∈ [𝑚], min-plus тропическая гиперплоскость с вершиной 𝑝, 

обозначаемая ℋ(𝑝), представляет собой множество точек 𝑧 ∈ ℝ𝑚, такое, что минимум в тропическом 

скалярном произведении 
(3)    𝑝𝑇 ⊙ 𝑧 = 𝑚𝑖𝑛{𝑧1 + 𝑝1, ⋯ , 𝑧𝑚 + 𝑝𝑚} 

достигается как минимум дважды. Аналогично, тропическая гиперплоскость max-plus с вершиной 𝑝, обо-

значенной ℋ(𝑝), представляет собой набор 𝑧 ∈ ℝ𝑚, такой, что максимум в 

(4)    𝑝𝑇 ⊙ 𝑧 = 𝑚𝑎𝑥{𝑧1 + 𝑝1, ⋯ , 𝑧𝑚 + 𝑝𝑚} 
достигается по крайней мере дважды. 

В классической линейной алгебре дополнением гиперплоскости является объединение двух откры-
тых полупространств. В тропической линейной алгебре дополнением тропической гиперплоскости в 
𝕋ℙ𝑚−1 является объединение 𝑚 открытых секторов. 

Определение 3.6. 𝑗-й открытый сектор тропической гиперплоскости max-plus с вершиной −𝑝, обо-

значаемый ℋ𝑗

°
(𝑝), является таким множеством точек 𝑧 ∈ ℝ𝑚, что максимум (4) достигается только в точке 

𝑗. То есть, 

ℋ𝑗

°
(𝑝): = {𝑧 ∈ 𝕋ℙ𝑚−1: 𝑧𝑗 + 𝑝𝑗 > 𝑧𝑘 + 𝑝𝑘  ∀𝑘 ≠ 𝑗}  

Его замыканием является 𝑗-й замкнутый сектор гиперплоскости max-plus с вершиной −𝑝,  

ℋ𝑗(𝑝): = {𝑧 ∈ 𝕋ℙ𝑚−1: 𝑧𝑗 + 𝑝𝑗 ≥ 𝑧𝑘 + 𝑝𝑘  ∀𝑘 ≠ 𝑗} 
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Множество 𝑧 ∈ ℝ𝑚 такое, что максимум (4) достигается в точке 𝑗 и, возможно, во второй координате. 

Для матрицы 𝐿 ∈ ℝ𝑚×𝑚 с нулевой диагональю пусть 𝐿1. . . , 𝐿𝑚 ∈ 𝕋ℙ𝑚−1 – это 𝑚 строк из 𝐿, рассмат-

риваемых как векторы в 𝕋ℙ𝑚−1. Для упрощения записи запишите ℒ𝑗 для ℋ𝑗(𝐿𝑗), то есть, 

ℒ𝑗 = ℋ𝑗(𝐿𝑗) = {𝑡 ∈ 𝕋ℙ𝑚−1: 𝐿𝑗𝑘 + 𝑡𝑘 ≤ 𝑡𝑗 ∀𝑘 ≠ 𝑗} 

Пишем ℒ𝑗

°
 для соответствующего 𝑗-го открытого сектора ℋ𝑗

°
(𝐿𝑗) 

ℒ𝑗

°
 = ℋ𝑗(𝐿𝑗) = {𝑡 ∈ 𝕋ℙ𝑚−1: 𝐿𝑗𝑘 + 𝑡𝑘 < 𝑡𝑗  ∀𝑘 ≠ 𝑗} 

Его граница ℒ𝑗\ℒ𝑗

°
 обозначается 𝜕ℒ𝑗. При этом граница представляет собой объединение 𝑚 − 1 по-

лугиперплоскостей 

𝜕ℒ𝑗 = ⋃ ℒ𝑗𝑘

𝑘∈[𝑚],𝑘≠𝑗

, 

где 𝑘-й кусочек ℒ𝑗𝑘 – это множество 

ℒ𝑗𝑘 = {𝑡 ∈ 𝕋ℙ𝑚−1: 𝐿𝑗𝑘 + 𝑡𝑘 = 𝑡𝑗, 𝐿𝑗𝑘′ + 𝑡𝑘′ < 𝑡𝑗   ∀𝑘′ ≠ 𝑗, 𝑘} 

Как и прежде, подчеркивание используем для обозначения аналогичной величины в min-plus. 

Например, ℒ𝑗 – 𝑗-й сектор гиперплоскости min-plus с вершиной −𝐿𝑗 в 𝕋ℙ𝑚−1, равен 

ℒ𝑗 = {𝑡 ∈ 𝕋ℙ𝑚−1: 𝐿𝑗𝑘 + 𝑡𝑘 ≥ 𝑡𝑗 ∀𝑘 ≠ 𝑗} 

Определение 3.7 (Расположение тропических гиперплоскостей). Пусть 𝐿 ∈ ℝ𝑚×𝑚, 𝐿1. . . , 𝐿𝑚 ∈ ℝ𝑚 – 

её векторы строки. Рассмотрим множество тропических гиперплоскостей {ℋ(𝐿𝑖): 𝑖 ∈ [𝑚]} в 𝕋ℙ𝑚−1. Пере-

сечения их различных секторов разделяют 𝕋ℙ𝑚−1 на многогранный комплекс, называемый расположе-

нием тропических гиперплоскостей ℋ(𝐿). 

Определение 3.8 (Доминирующее расположение). Пусть 𝐿 ∈ ℝ𝑚×𝑚, 𝐿1. . . , 𝐿𝑚 ∈ ℝ𝑚 – её векторы 

строки. Множество замкнутых секторов {ℒ𝑖: 𝑖 ∈ [𝑚]} в 𝕋ℙ𝑚−1 называется макс-плюс доминирующим рас-

положением 𝐿, обозначаемым 𝒟(𝐿). Аналогично, {ℒ𝑖: 𝑖 ∈ [𝑚]} – это мин-плюс доминирующее расположе-

ние 𝐿, обозначаемое 𝒟(𝐿).  

Предложение 3.9 (Maclagan and Sturmfels. 2015). Пусть 𝐿 ∈ ℝ𝑚×𝑚. Тропическая гиперплоскость 

ℋ(𝐿) является многогранным комплексом. Кроме того, объединение ограниченных клеток ℋ(𝐿) 

равно 𝑙𝑚(𝐿). 

3.7. Ковекторы 

Пусть 𝐿 ∈ ℝ𝑚×𝑚. Каждая гиперплоскость в ℋ(𝐿) разбивает 𝕋ℙ𝑚−1 на 𝑚 секторов. Нумерация секто-

ров соответствует координате, при которой минимум достигается один раз. Для данной точки 𝑝 ∈ 𝕋ℙ𝑚−1 

мы можем запросить ее положение относительно тропических гиперплоскостей, связанных с 𝐿. Эта ком-
бинаторная информация закодирована в ковекторах. 

Определение 3.10. Мин-плюс ковектор (или комбинаторный тип) вектора 𝑝 ∈ 𝕋ℙ𝑚−1 относительно 
ℋ(𝐿), обозначаемый 𝑐𝑜𝑉𝑒𝑐𝐿(𝑝), представляет собой матрицу в {0,1}m×m с 

𝑐𝑜𝑉𝑒𝑐𝐿(𝑝)𝑘𝑖 = 1 ⟺ 𝑝 ∈ ℋ𝑘(𝐿𝑖). 

Можно думать о ковекторе как о матрице смежности двудольного графа (𝑚, 𝑚). Он имеет ребро 

(𝑘, 𝑖), если и только если 𝑝 находится в секторе 𝑘 гиперплоскости с вершиной в точке −𝐿𝑖, 𝑖-й строки 𝐿. 
Ковекторы являются центральным понятием в тропической выпуклой геометрии. Эта идея была выдви-
нута в (Develin and Sturmfels, 2004) как комбинаторные типы (Jehiel, Moldovanu, and Stacchett,1996) и 
впоследствии получила дальнейшее развитие (Joswig and Loho, 2016). 

Точки в одной и той же открытой клетке ℋ(𝐿) имеют один и тот же ковектор. Таким образом, можно 

говорить о ковекторе клетки 𝜈 из ℋ(𝐿). Обозначим его 𝑐𝑜𝑉𝑒𝑐𝐿(ν). Назовем 𝑐𝑜𝑉𝑒𝑐𝐿(ν) обратимым, если 

для каждого 𝑖 ∈ [𝑚] существует некоторое 𝑗 ∈ [𝑚] такое, что 𝑐𝑜𝑉𝑒𝑐𝐿(ν)𝑖𝑗 = 1. Ниже приведена характери-

стика ограниченных клеток в расположении тропических гиперплоскостей по их ковекторам. 

Лемма 3.11 (Develin and Sturmfels, 2004). Пусть 𝜈 ⊂ 𝕋ℙ𝑚−1 – клетка в ℋ(𝐿). Тогда 𝜈 ограничено (как 

подмножество 𝕋ℙ𝑚−1) тогда и только тогда, когда 𝑐𝑜𝑉𝑒𝑐𝐿(ν) обратима. 

3.8. Политропы и тропические собственные пространства. 

Определение 3.12. Политроп 𝑃 ⊂ 𝕋ℙ𝑚−1 – это тропический многогранник, который также является 

обычным многогранником. 
Термин политроп был введен в (Joswig and Kulas, 2010). Существует множество эквивалентных 

характеристик политропов. Здесь собраны те, которые имеют отношение к экономическим механизмам. 
Первые три результата являются классическими результатами, см. (Maclagan and Sturmfels, 2015). По-
следние два утверждения являются характеристиками Мураты, который называет политроп 𝐿-выпуклым 
множеством (Murota, 2003). 

Предложение 3.13. Пусть 𝑃 ⊂ 𝕋ℙ𝑚−1 – непустое множество. Следующие утверждения эквива-
лентны.  

(1) 𝑃 – политроп.  
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(2) Существует матрица 𝑀 ∈ ℝ𝑚×𝑚 такая, что 𝑃 = 𝐸𝑖𝑔(𝑀).  

(3) Существует матрица 𝑀 ∈ ℝ𝑚×𝑚 такая, что  

𝑃 = {𝑦 ∈ 𝕋ℙ𝑚−1: 𝑦𝑖 − 𝑦𝑗 ≤ 𝑀𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ∈ [𝑚]}. 

(4) 𝑃 =  𝐼𝑚(𝑀∗) для единственной звезды Клини 𝑀∗.  

(5) 𝑃 – как мин-плюс тропический многогранник, так и макс-плюс тропический многогранник  

(6) 𝑃 – как минимальное плюс выпуклое множество, так и максимальное плюс выпуклое множество. 

Как множество в 𝕋ℙ𝑚−1, многогранник 𝑃 является компактным выпуклым многогранником размер-

ности 𝑘 ∈ {0,1, … , 𝑚 − 1}. Назовем 𝑃 полномерным, если он имеет размерность 𝑚 − 1. Политроп размер-

ности 𝑘 < 𝑚 − 1 в 𝕋ℙ𝑚−1 получается путем вложения 𝑘−мерного политропа в 𝑘-мерное подпространство 

𝕋ℙ𝑚−1, определяемое пересечениями гиперплоскостей вида 

𝑥𝑖 = 𝑥𝑗  

для некоторых 𝑖, 𝑗 ∈ [𝑚]. В матричных терминах это означает, что если мы запишем политроп 𝑃 как 𝑙𝑚(𝐿), 

то как множество в 𝕋ℙ𝑚−1, точно 𝑘 + 1 из его столбцов (или строк) уникальны. Таким образом, часто 
бывает достаточно рассмотреть теорию для полномерных политропов. 

3.9. Двойственность строк-столбцов и минимальные политропы.  
Существует тривиальная двойственность между алгеброй min и max, вытекающая из того факта, 

что для 𝑎, 𝑏 ∈ ℝ, 

𝑚𝑖𝑛{𝑎, 𝑏} = −𝑚𝑎𝑥{−𝑎, −𝑏}. 
Это приводит к тривиальной двойственности между пространством строк и столбцов матрицы 𝐿 ∈ ℝ𝑚×𝑚 
следующим образом. 

Лемма 3.14. Пусть 𝐿 ∈ ℝ𝑚×𝑚. Отображение 𝑥 ↦ −𝑥 переводит ℋ(𝐿) в ℋ(−𝐿𝑇). 

Существует более удивительная двойственность строк и столбцов 
Теорема 3.15 (Develin and Bernd, 2004). Пусть 𝐿 ∈ ℝ𝑚×𝑚. Существует изоморфизм между много-

гранными комплексами 𝐼𝑚(𝐿) и 𝐼𝑚(𝐿𝑇), полученными путем ограничения кусочно-линейных отображе-

ний 𝑧 ↦ 𝑦: = 𝐿⨀(−𝑧) и 𝑦 ↦ 𝑧: = (−𝑧)𝑇⨀𝐿 на 𝐼𝑚(𝐿) и 𝐼𝑚(𝐿𝑇), соответственно. 

Согласно части (5) предложения 3.13, изоморфизм в теореме 3.15 сводится к тривиальному отоб-

ражению 𝑦 ↦ −𝑦, индуцированному отображением 𝐿 ↦ −𝐿𝑇 тогда и только тогда, когда 𝐿 – звезда Клини, 
или, что эквивалентно, тогда и только тогда, когда 𝐼𝑚(𝐿) – политроп. 

Когда 𝐿 = −𝐿𝑇, то 𝐼𝑚(𝐿) не только является макс-плюс и мин-плюс тропическим многогранником, но 

и имеет одинаковый набор генераторов макс-плюс и мин-плюс. Примером является стандартный мини-
мальный политроп  

∆𝑚−1= 𝑐𝑜𝑛𝑣(0, 𝑒1, 𝑒1 + 𝑒2, 𝑒1 + 𝑒2 + 𝑒3, 𝑒1 + ⋯ + 𝑒𝑚) + ℝ ∙ (1, ⋯ ,1), 

где conv обозначает классическую выпуклую оболочку, а 𝑒𝑖 – 𝑖-й стандартный базисный вектор в ℝ𝑚, то 

есть вектор с 1 в 𝑖-й координате и нулями в других. Обратите внимание, что для этого политропа его 
набор макс-плюс тропических образующих, мин-плюс тропических образующих и вершин как обычного 
многогранника совпадают. В некотором смысле это единственный политроп, обладающий таким свой-
ством. Следующая теорема, по сути, является повторением (Murota. 2003, теорема 7.24). Это ключ к 
характеристике слабой монотонности при проектировании механизмов, см. раздел 6.1. 

Определение 3.16. Многогранник 𝑃 ⊂ 𝕋ℙ𝑚−1 размерности 𝑘 ∈ {0,1. . . , 𝑚 − 1} называется минималь-

гым, если он, как классический многогранник имеет 𝑘 + 1 вершин. 

Теорема 3.17. Пусть 𝑃 – полномерный тропический многогранник в 𝕋ℙ𝑚−1. Тогда эквивалентны 
следующие  

(1) 𝑃 – полномерный минимальный многогранник.  

(2) 𝑃 – это как min-plus, так и max-plus полномерный тропический многогранник с одинаковым набо-
ром 𝑚 образующих.  

(3) С точностью до перестановок существует единственная матрица 𝐴 ∈ ℝ𝑚×𝑚, такая, что  
𝐴 = −𝐴𝑇, 𝑃 = 𝐼𝑚(𝐴), и как подмножество 𝕋ℙ𝑚−1 столбцы 𝐴 уникальны.  

(4) Звезда Клини 𝐴∗ из 𝑃 имеет вид 

𝐴𝑖𝑗
∗ = 𝑝 − 𝑝 + 𝑎(𝐴∆𝑚−1

∗ )
𝑖𝑗

, 

для некоторого вектора 𝑝 ∈ 𝕋ℙ𝑚−1 и некоторого скаляра 𝑎 ∈ ℝ𝑚, где 𝐴∆𝑚−1

∗  – звезда Клини из ∆𝑚−1. 

(5) С точностью до перестановок существует вектор 𝑝 ∈ 𝕋ℙ𝑚−1 и скаляр 𝑎 ∈ ℝ𝑚 такие, что 

(5)   𝑃 ≡ 𝑝 + 𝑎 ∙ ∆𝑚−1          

Доказательство. Предложение 3.13 подразумевает (2) ⇔ (3) и (4) ⇔ (5). Докажем (1) ⇔ (5). Со-
гласно (Murota 2003., теорема 7.24), любой политроп может быть регулярно разложен как объединения 
меньших политропов. Из этого доказательства, использующего расширение Ловаша (Lova´sz) соответ-
ствующих 𝐿-выпуклых функций над 𝑃, следует, что минимальные политропы являются в точности вы-

пуклой оболочкой максимальных цепей на {0,1}𝑚. До перестановки на [𝑚] такая цепочка является лек-
сикографической. Выпуклая оболочка лексикографической цепочки равна ∆𝑚−1. Таким образом, до пе-

рестановки, масштабирования и перевода минимальный политроп 𝑃 равен ∆𝑚−1, по мере 
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необходимости. Теперь докажем (5) ⇔ (2). Предположим, что 𝑃 задается формулой (5). Тогда проще 
всего проверить, удовлетворяет ли он (2). И наоборот, предположим (2). Согласно (Murota.2003, теорема 
7.24), любая 𝐿-выпуклая функция над 𝑃 также должна быть 𝐿-вогнутой. Таким образом, это должна быть 

классическая гиперплоскость. Таким образом, 𝑃 имеет уникальное расширение Ловаша, которое подра-
зумевает, что вплоть до масштабирования и трансляции оно должно быть симплексом, поддерживае-
мым цепочками {0,1}𝑚. Поскольку 𝑃 полномерно, цепочка максимальна, и, таким образом, имеем (5).  

3.10. Пример. Все вышеприведенные концепции могут быть проиллюстрированы в следующем 

примере. Пусть 𝑚 = 3, 𝛿 ∈ [0,1) и 𝑐1 = (0, −1, −4), 𝑐2 = (0, 𝛿, 0), 𝑐3 =  (0, −4, −1) –точки в 𝕋ℙ2. Сложив их 
вместе в виде векторов-столбцов, получим матрицу 

𝐴 = (
0 0 0
1 −𝛿0 4
4 0 1

) 

Пусть 𝑐1, 𝑐2, 𝑐3 векторы в 𝕋ℙ2 нормированы так, что 𝑖-я координата 𝑖-го вектора равна нулю, получим 
новую матрицу 

𝐿 = (
0 𝛿 −1
1 0 3
4 𝛿 0

) 

Пусть 𝑃 = 𝐼𝑚(𝐿). Можно проверить, что 𝑃 = 𝐼𝑚(𝐴). Матрица 𝐿 – это единственная матрица с нуле-
вой диагональю, связанная с 𝑃. 

На графе 𝐺(𝐿) средние длины двух циклов равны 
1

2
(1 + 𝛿), 

1

2
(3 + 𝛿), и 

3

2
. Средние длины циклов трех 

циклов равны 
1

3
(𝛿 + 3 + 4) и 

1

3
𝛿. Собственные циклы имеют нулевые средние длины циклов. Таким об-

разом, для любого 𝛿 ∈ [0,1) мы имеем 𝜆(𝐿) = 0. 

Пусть 𝛿 ∈ [0,1). Чтобы вычислить звезду Клини в созвездии 𝐿, следует заметить, что 

𝐿⨀2 = (
0 𝛿⨀(1 − 𝛿) −1

1 0 0
1 + 𝛿 𝛿 0

) , 𝐿⨀3 = (
0 −1 + 𝛿 −1
1 0 0

1 + 𝛿 𝛿 0
) 

Таким образом, звезда Клини 𝐿∗ = 𝐿⨁𝐿⨀2⨁𝐿⨀3 = 𝐿⨀3. В этом случае тропическое собственное про-

странство 𝐸𝑖𝑔(𝐿) имеет граневое представление 

 

На рисунке 3.1 показано расположение тропической гиперплоскости ℋ(𝐿𝑇) для 𝛿 ∈ (0,1) на панели 

(𝐴) и 𝛿 = 0 на панели (B). Это расположение состоит из мин-плюс тропических гиперплоскостей, верши-

нами которых являются векторы столбцов −𝐿1
𝑇, −𝐿2

𝑇 и 𝐿3
𝑇 из 𝐿. В первом случае зеленый треугольник 

посередине – это тропическое собственное пространство 𝐸𝑖𝑔(𝐿). Во втором случае собственное тропи-

ческое пространство 𝐸𝑖𝑔(𝐿) является зеленой точкой. Тропический многогранник 𝐼𝑚(𝐿) состоит из огра-

ниченных отрезков прямой от вершин 𝐸𝑖𝑔(𝐿) до точек 𝑐1, 𝑐2, 𝑐3, помеченных их координатами. 

 

(A) Случай 𝜹 > 𝟎.  

B) Случай 𝜹 = 𝟎. Тропическое собственное  
пространство сжимается в точку. 

Рисунок 3.1. Расположение тропической гиперплоскости 𝓗(𝑳𝑻) для 𝜹 ∈ (𝟎, 𝟏) (слева) и для 𝜹 = 𝟎 (справа). 

Источник – (Crowell and Tran, 2016) 

Ковекторы точек, обозначенных от 𝑎 до 𝑐, задаются следующими матрицами. 

𝑐𝑜𝑉𝑒𝑐𝐿(𝑎) = (
0 0 0
1 1 0
0 0 1

) , 𝑐𝑜𝑉𝑒𝑐𝐿(𝑏) = (
1 1 1
0 0 0
0 1 0

) , 𝑐𝑜𝑉𝑒𝑐𝐿(𝑐) = (
1 0 0
0 1 0
0 0 1

). 

Важно отметить, что 𝑎 и 𝑏 лежат в неограниченных клетках тропической гиперплоскости, поэтому 

их ковекторы не обратимы, в то время как 𝑐 лежит в ограниченной клетке, поэтому его ковектор обратим. 
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4. Геометрическое представление неделимого спроса 

4.1. Допущения  
У агента есть оценка 𝑢: 𝐴 → ℝ для конечного набора пакетов 𝐱 ∈ 𝐴 ⊊ ℤ𝑛 . То есть пакеты, сформи-

рованные из 𝑛 различных товаров, которые состоят из неделимых единиц. Каждый из этих товаров мо-
жет быть доступен в нескольких единицах по линейной цене. (Можно обрабатывать единицы товара по 
независимой цене, рассматривая их как разные товары.) 

Обратите внимание, что пакет может быть отрицательным или со смешанным знаком: отрицатель-
ные координаты представляют единицы проданных товаров. Таким образом, модель допускает продав-
цов с нетривиальными функциями снабжения и более обычных торговцев, а также покупателей. Обра-
тите также внимание, что область 𝐴 наборов, которые агент считает возможными, может быть любым 

конечным множеством в ℤ𝑛. Таким образом, агент может потребовать несколько единиц каждого товара. 
(Разные единицы одного и того же товара, конечно, неразличимы для агента.) Более того, 𝐴 не обяза-
тельно должен содержать каждый целочисленный пакет в своей выпуклой оболочке. Также не обяза-
тельно 𝐴 включать каждый пакет, доступный в экономике. В частности, если пакет полностью неприем-
лем для агента, его просто нет в 𝐴. (Это эквивалентно разрешению агенту оценивать некоторые пакеты 
в “−∞”, и это более удобно.) 

Агент обладает квазилинейной полезностью, поэтому максимизирует 𝑢(𝐱) − 𝐩 ∙ 𝐱, где 𝐱 ∈ ℝ𝒏 – век-
тор цены. Оценки не обязательно должны быть положительными или слабо возрастающими, и допуска-
ются отрицательные цены, поэтому модель охватывает как “неудачи”, так и товары. 

Позже (в 4.3) модель распространяется на конечный набор агентов: агент 𝑗 будет иметь оценку 𝑢𝑗 

на целочисленных пакетах в конечной области 𝐴𝑗. Также в (Baldwin and Klemperer, 2014, 2019) рассмат-
ривается конкурентное равновесие между этими агентами при наличии внешнего предложения. Таким 
образом, структура будет охватывать случай, в котором все трейдеры (включая всех продавцов) явно 
моделируются как агенты, то есть экономики обмена (для которых внешнее Предложение равно 0). 

4.2. Локус цен безразличия (LIP)  
Цены, по которым агент безразличен более чем к одному пакету — это цены, по которым востре-

бованный им набор 𝐷𝑢(𝐩): = argmax𝑥∈𝐴{𝑢(𝐱) − 𝐩 ∙ 𝐱} содержит несколько пакетов:  

Определение 4.1: Локус цен безразличия (LIP) равен ℒ𝑢: = {𝐩 ∈ ℝ𝑛: |𝐷𝑢(𝐩)| > 1}. 
В математической литературе это множество известно как “тропическая гиперповерхность, смотри, 

например” (Mikhalkin, 2004) и другие источники, но (Baldwin and Klemperer, 2014, 2019) вводят новую 
терминологию, чтобы облегчить понимание экономистами. 

Поскольку 𝑢(𝐱) − 𝐩 ∙ 𝐱 квазилинейна (и, следовательно, также непрерывна), LIP содержит только 
цены, при которых спрос может изменяться в ответ на изменение цены, и представляет собой объеди-
нение (𝑛 − 1)-мерных линейных фрагментов, которые мы будем называть гранями. Грани разделяют 
области однозначности спроса (UDR), в каждой из которых некоторый пакет является единственным 
востребованным. 

На рисунке 4.1(а) показан простой пример LIP. Агент однозначно запрашивает один из пакетов (0,0), 
(0,1), и (1,0) в соответственно-помеченной двумерной области, таким образом, эти области являются 
UDR. Агент запрашивает оба пакета (0,0) и (0,1) на отрезке линии {(𝐩𝟏, 4) ∈ ℝ2: 𝐩𝟏 ≥ 5}; это грань, как и 

два других показанных отрезка линии. Если бы вместо этого пакеты были сформированы из 𝑛 = 3 раз-
личных товаров, то грани были бы сформированы из плоских сегментов, разделяющих трехмерные UDR, 
и так далее в более высоких измерениях. Итак, формально мы определяем следующее: 

Определение 4.2: Пусть 𝑢: 𝐴 → ℝ. 

1. Область однозначности спроса (UDR) в 𝑢 – это множество всех цен, по которым только данный 
пакет в 𝐴 пользуется спросом. То есть он имеет вид {𝐩 ∈ ℝ𝑛: {𝐱} = 𝐷𝑢(𝐩)} для некоторого 𝐱 ∈ 𝐴. 

2. Гранью ℒ𝑢 является подмножество 𝐹 ⊆ ℒ𝑢 такое, что существуют 𝐱𝟏, 𝐱𝟐 ∈ 𝑨, 𝐱𝟏 ≠ 𝐱𝟐, удовлетво-

ряющие 𝐹 = {𝒑 ∈ ℒ𝑢: 𝒙𝟏, 𝒙𝟐 ∈ 𝐷𝑢(𝒑)} и 𝑑𝑖𝑚𝐹 = 𝑛 − 𝑙. 1 

Таким образом, UDR включают все цены, которых нет в LIP, и для каждой грани есть пара пакетов, 
которые востребованы по всем её ценам. 

Грани содержат важную экономическую информацию: при любой цене p в данной грани 𝐹 агенту 

безразличен выбор между пакетами x и x', требуемыми в UDR по обе стороны от 𝐹. То есть 𝑢(𝐱) − 𝐩 ⋅
𝐱 = 𝑢(𝐱′) − 𝐩 ⋅ 𝐱′, ∀𝐩 ∈ 𝐹. Таким образом, 𝐩 ⋅ (𝐱′ − 𝐱) является постоянным для всех 𝐩 ∈ 𝐹. Следова-

тельно, 𝐹 является нормалью к вектору, который определяет изменение спроса, x'-x, между UDR по обе 

стороны от 𝐹. На рисунке 1(а), опять же, грань {(𝑝1, 4) ∈ ℝ2: 𝑝1 ≥ 5} содержит цены, при которых спрос 

может измениться на (0,0) − (0,1) = (0, −1), какой вектор нормален к этой грани. 

 
1 Далее всегда используются естественные размерности. Таким образом, размерность множества 𝐹 ⊆ ℝ𝑛 является размерностью 

его аффинной оболочки, то есть размерностью наименьшего линейного подпространства 𝑈 ⊆ ℝ𝑛 такого, что 𝐹 ⊆ {с} + 𝑈 для 

некоторого фиксированного вектора 𝐜. Здесь и по всему тексту применяем к наборам сложение по Минковскому. 
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Таким образом, геометрия LIP сообщает нам направления изменения спроса между парами цен. 
Чтобы узнать, насколько сильно меняется спрос в любом направлении, указанном LIP, нам нужна еще 
одна информация – веса граней: 

Определение 4.3: Пусть x, x' – пакеты, востребованные в UDR по обе стороны от грани 𝐹. Вес 𝐹, 

𝑤𝑢(𝐹), является наибольшим общим делителем элементов x'–x. 

Теперь 
1

𝑤𝑢(𝐹)
(𝐱′ − 𝐱)является примитивным целочисленным вектором, то есть наибольший общий 

делитель его элементов равен 1. Итак, поскольку товары неделимы, это наименьшее возможное изме-
нение пакета в направлении (𝐱′ − 𝐱). Таким образом, вес грани, 𝑤𝑢(𝐹) – это целое число, на которое 

умножается наименьшее возможное изменение пакета при пересечении грани 𝐹. 

 
Рисунок 4.1. Примеры граней 𝓛𝒖 для двух значений 𝒖. Грани – это отрезки линии;  

помеченная грань (b) имеет вес 2. Пакет, востребованный в каждом UDR, помечен. 
Источник – (Baldwin and Klemperer, 2014) 

На рисунке 1(b) показан LIP с гранью весом 2, а именно {(𝑝1, 3): 𝐩 ∙ 𝐱 ≥ 6}, по которому спрос изме-
няется от (0,0) до (0,2), то есть удвоенное наименьше изменение в этом направлении. 

Вектор (𝐱′ − 𝐱) направлен от UDR, у которого запрашивается x', к UDR, у которого запрашивается 

x, в направлении, противоположном изменению цены. Но поскольку 𝐹 является (𝑛 − 1)-мерным, суще-
ствует единственный примитивный целочисленный вектор, нормальный к 𝐹 и указывающий в этом 
направлении. Итак, мы доказали: 

Предложение 4.4: 1. Если x, x' одинаково требуются по обе стороны грани 𝐹, то 𝑝 ∙ (𝐱′ − 𝐱) является 

постоянным для всех 𝐩 ∈ 𝐹. 2. Изменение спроса при изменении цены между ЕПД по обе стороны от 𝐹 

равно 𝑤𝑢(𝐹), умноженному на примитивный целочисленный вектор, номинальный для 𝐹, и указывает в 
направлении, противоположном изменению цены. 

То есть LIP и его вектор весов, 𝑤𝑢, взятые вместе, содержат всю информацию о том, как меняется 
спрос между UDR. 

4.2.1. Ценовой комплекс  
Чтобы развить полную теорему эквивалентности (теорема 4.14), нужно понять, как 𝑢 определяет 

“ценовой комплекс” из “клеток”; эти клетки обобщают грани. 
Определение 4.5: Пусть 𝑢: 𝐴 → ℝ. 

1. Клетка ценового комплекса из и является непустым множеством 𝐶 ⊆ ℝ𝑛 таким, что существуют 

𝐱𝟏, . . . , 𝐱𝐤 ∈ 𝐴 с 𝑘 ≥ 1, удовлетворяющие 𝐶 = {𝐩 ∈ ℝ𝑛: 𝒙𝟏, . . . , 𝒙𝒌 ∈ 𝐷𝑢(𝐩)}. 
2. Ценовой комплекс – это набор всех ячеек ценового комплекса. 
3. Клетки LIP – это клетки ценового комплекса, содержащиеся в LIP. 
По непрерывности, замыкание UDR – клетка ценового комплекса: она включает в себя все точки, в 

которых востребован конкретный набор. Любая другая клетка ценового комплекса определяется спро-
сом на два или более наборов, и так же является клеткой LIP. 

Таким образом, на рисунке 1(а) клетки ценового комплекса представляют собой замыкания трех 
UDR; трех граней; а также точку (5,4), где агент безразличен ко всем наборам (0,0), (1,0), и (0,1). Двумер-
ные замыкания UDR пересекаются в одномерных гранях, которые пересекаются в клетке нулевой раз-
мерности. 

Все это вписывается в стандартную схему из выпуклой геометрии, поэтому напомним следующие 
определения: 

Определение 4.6: Рассмотрим евклидово пространство ℝ𝑛, такое как пространство цен. 

1. Рациональный многогранник – это пересечение конечного набора полупространств {𝐩 ∈ ℝ𝑛: 𝐩 ∙
𝐯 ≤ 𝛼} для некоторых 𝐯 ∈ ℤ𝑛 и 𝛼 ∈ ℝ (нам не нужно дополнительно ограничивать). 

2. Грань многогранника 𝐶 максимизирует 𝐩 ∙ 𝐯 над 𝐩 ∈ 𝐶 для некоторого фиксированного 𝐯 ∈ ℝ𝑛. 

3. Внутренняя часть многогранника 𝐶 равна 𝐶0: = {𝐩 ∈ 𝐶′: 𝐩 ∉ 𝐶 для любой грани 𝐶′ ⊊ 𝐶}. 
4. Рациональный многогранный комплекс 𝛱 представляет собой конечное множество ячеек 𝐩 ∈ ℝ𝑛, 

такую, что: 
(a) если 𝐶 ∈ 𝛱, то 𝐶 является рациональным многогранником, и любая грань 𝐶 находится в 𝛱; 
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(b) если 𝐶, 𝐶′ ∈ 𝛱, то либо 𝑆 ∩ 𝐶 = ∅, либо 𝑆 ∩ 𝐶′ является гранью как 𝐶, так и 𝐶′. 

5. 𝐾-клетка – это клетка размерности 𝑘. Грань — это клетка размерности 𝑛 − 1. 

6. Многогранный комплекс является 𝑘-мерным, если все его клетки содержатся в его 𝑘-клетках, то 

есть в клетках размерности 𝑘. 

7. Взвешенный многогранный комплекс – это пара (𝛱, 𝐰), где 𝛱 – многогранный комплекс, а 𝐰 – 
вектор, присваивающий вес 𝑤(𝐹) ∈ ℤ>0 каждой грани 𝐹 ∈ 𝛱. 

Клетки ценового комплекса определяются наборами линейных равенств и слабых неравенств. Та-
ким образом, легко показать следующий результат: 

Предложение 4.7: 1. Комплекс прайса является n-мерным рациональным многогранным комплек-
сом. 2. Клетки LIP, соединенные с весами граней, образуют (𝑛 − 1)-мерный взвешенный рациональный 
многогранный комплекс. 

Таким образом, если 𝐶 является клеткой ценового комплекса, то каждая грань 𝐶′ из 𝐶, удовлетво-

ряющая 𝐶′ ⊊ 𝐶, также является клеткой ценового комплекса. При ценах в таком 𝐶′ агент требует допол-
нительные пакеты к тем, которые он запрашивает в C. Но ее набор требований постоянен внутри клетки: 

Лемма 4.8: 𝐷𝑢(𝐩°) постоянна для всех p° внутри C° клетки C. Более того, 𝐷𝑢(𝐩°) определяет клетку: 

𝐶 = {𝐩 ∈ ℝ𝑛: 𝐷𝑢(𝐩°) ⊆ 𝐷𝑢(𝐩)}. 
Напомним, что LIP ℒ𝑢 является объединением его граней. И, наоборот, можно привести следующую 

лемму: 
Лемма 4.9: Пусть 𝑢: 𝐴 → ℝ. 

1. UDR являются связанными компонентами дополнения ℒ𝑢, и поэтому являются выпуклыми, 𝑛-
мерными, открытыми и плотными, а 𝑛-клетки комплекса цен являются замыканиями UDR. 

Таким образом, можно легко переключаться между LIP ℒ𝑢 и его ценовым комплексом без ссылки на 

𝑢 или прямого применения определения 4.5, часть 1. Рисунок 4.1 иллюстрирует все эти моменты. 

4.2.2. Вогнутость в оценках 
Вогнутость оценки понимается в стандартном смысле "вогнуто-расширяемый", но с дополнитель-

ным свойством, поскольку допускается, что область может быть любым конечным подмножеством ℤ𝑛: 
Определение 4.10: Пусть 𝐴 ⊊  ℤ𝑛 конечно, и пусть 𝑢: 𝐴 → ℝ. 
1. A является дискретно-выпуклым, если оно содержит все целые точки внутри своей выпуклой 

оболочки, то есть conv(𝐴) ∩ ℤ𝑛 = 𝐴. 

2. Пусть conv(𝑢): conv(𝐴) → ℝ для минимальной слабовогнутой функции, везде слабо большей, чем 
и (иногда называемой “вогнутой мажорантой” 𝑢). 

3. 𝑢 является вогнутой, если 𝐴 дискретно-выпукло и 𝑢(𝐱) = conv(𝑢)(𝐱) для всех 𝐱 ∈ 𝐴. 
Обычно, вогнутые оценки – это те, для которых каждый возможный пакет востребован по некоторой 

цене, и для которых спрос, установленный по любой цене, является дискретно-выпуклым точно так же, 
как для делимых, слабо вогнутых оценок, и по существу по тем же причинам: 1 

Лемма 4.11: 𝑢: 𝐴 → ℝ является вогнутым,  

если для всех 𝐱 ∈ 𝑐𝑜𝑛𝑣(𝐴) ∩ ℤ𝑛 существует 𝐩 таким, что 𝐱 ∈ 𝐷𝑢(𝐩), 

если 𝐷𝑢(𝐩) дискретно-выпукло для всех 𝐩. 
Оценка на рисунке 4.1(b) иллюстрирует несостоятельность вогнутости: для нее ни одна цена 𝐩 не 

удовлетворяет (0,1) ∈ 𝐷𝑢(𝐩) и, например, 𝐷𝑢(7,3) =  {(0,0), (0,2)} не является дискретно-выпуклой. 

Если слабо увеличивать оценку до тех пор, пока она не станет вогнутой, единственные значения, 
которые нужно изменить, – это значения для пакетов, которые ранее никогда не требовались. И увели-
чение стоимости любого никогда не востребованного пакета не влияет на поведение агента до тех пор, 
пока пакет не будет востребован лишь незначительно, когда оценка становится локально аффинной. 
Затем незначительно определенный пакет добавляется к пакету спроса по некоторым ценам, но никогда 
не востребован однозначно. Все остальные пучки требуются точно такими же, какими они были ранее, 
поэтому LIP остается неизменной. Например, на рисунке 4.1(b) увеличение 𝑢(0,1) до 3 приводит к вогну-
тому значению, но не изменяет LIP. В более общем плане справедлива следующая лемма: 

Лемма 4.12: Пусть Let 𝑢: 𝐴 → ℝ. 
1. Для каждого 𝐱 ∈ 𝐴 выполняется 𝑢(𝐱) =  conv(𝑢)(𝐱) тогда и только тогда, когда существует p такое, 

что 𝐱 ∈ 𝐷𝑢(𝐩). 

2. ℒ𝑢 = ℒ𝑢′, где 𝑢′ – это ограничение conv(𝑢) на conv(𝐴) ∩ ℤ𝑛. 

4.3. Теорема об оценочно-комплексной эквивалентности  
Теперь мы формулируем математический результат, экономические последствия которого важны 

и, как мы полагаем, новы: теорема об оценочно-комплексной эквивалентности. Это показывает, что мно-
жество в ℝ𝑛 является границей оценки (т.е. локусом точек безразличия квазилинейной функции полез-
ности) тогда и только тогда, когда оно обладает некоторыми легко проверяемыми геометрическими свой-
ствами. 

 
1 Эти результаты проиллюстрированы примером из раздела 4.4. Для случая делимости см., например, работу (Mas-Colell, 

Whinston, and Green,1995, с. 135–138), особенно предложение 5.С.1(v)), поскольку квазилинейная функция полезности эквива-

лентна стандартной функции прибыли с одним- технология вывода. 
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Согласно предложению 4.4, что, как только станут известны спрос в одном конкретном UDR и веса 
LIP, можно вывести спрос в каждом UDR, перейдя через ряд граней. Но если следовать за агентом по 
ценовому пути, который заканчивается там, где начался, спрос в конце должен быть таким же, как и в 
начале. Таким образом, веса на гранях должны удовлетворять условию балансировки: 

Определение 4.13 (Mikhalkin, 2004): (𝑛 − 1)-мерный взвешенный рациональный многогранный ком-

плекс 𝛱 сбалансирован, если для каждой (𝑛 − 2)-клетки 𝐺 ∈ 𝛱 веса 𝑤(𝐹𝑗) на гранях 𝐹1, … 𝐹𝑙, содержащих 

𝐺, и примитивных целочисленные нормальные векторы 𝑉𝐹𝑗
j для этих граней, которые определяются фик-

сированным направлением вращения вокруг 𝐺9, удовлетворяют1 ∑ 𝑤𝑙
𝑗=1 (𝐹𝑗)𝑉𝐹𝑗

= 0. 

Например, рисунок 4.1(b) сбалансирован, потому что 2 × (0,1) + 1 × (−1,0) + 1 × (1, −2) = 0. 
Это условие равновесия, является единственным условием, которому должен удовлетворять взве-

шенный рациональный многогранный комплекс, чтобы соответствовать некоторой оценке. 
Однако эта оценка не уникальна. Во-первых, лемма 4.12, часть 2, показала нам, что каждая оценка 

приводит к тому же LIP, что и вогнутая оценка. Более того, изменение 𝑢(𝐱) путем добавления константы 
или увеличения пакета, требуемого по любой цене, на фиксированный пакет, оставляет LIP неизменной. 
Итак, чтобы определить уникальную вогнутую оценку, нам нужно указать спрос, установленный по неко-
торой цене, и стоимость одного пакета. 

Теорема 4.14 — Теорема эквивалентности оценочного комплекса (Mikhalkin, 2004, Замечание 4.3 
и Предложение 4.4): Предположим, что (𝛱, 𝐰) является (𝑛 − 𝑙)-мерным взвешенным рациональным 
многогранным комплексом в ℝ𝑛, что ℒ является объединением ячеек в 𝛱, и что 𝐩 есть ли какая-либо 

цена, не содержащаяся в ℒ. 

1. Существует конечное множество 𝐴 ⊊ ℤ𝑛 и функция 𝑢: 𝐴 → ℝ, такая, что ℒ𝑢 = ℒ и 𝐰𝑢 = 𝐰, то-

гда и только тогда, когда (𝛱, 𝐰) сбалансировано. 

2. Если (𝛱, 𝐰) сбалансировано, тогда существует конечное множество 𝐴 ⊊ ℤ𝑛 и уникальная во-

гнутая оценка 𝑢: 𝐴 → ℝ такая, что 𝐷𝑢(𝐩) = {𝟎}, 𝑢(𝟎) = 0, ℒ𝑢 = ℒ, и 𝐰𝑢 = 𝐰. 

Теорема 4.14 завершает демонстрацию эквивалентности между оценками u, LIPs ℒ𝑢 и подходя-

щими взвешенными многогранными комплексами (𝛱, 𝐰). В нашем дополнительном материале (Болдуин 
и Клемперер (2019, приложение С)) приведен пример его применения. 

Условие балансировки аналогично критериям интегрируемости, таким как теорема Африата (см. 
например, (Vohra, 2011, теорема 7.2.1). Но, в то время как Африат начал с (конечного) набора цен в 
сочетании со спросом, теорема 2.14 использует только информацию о геометрических разделениях в 
ценовом пространстве, созданных (неопределенными) изменениями спроса. Таким образом, мы можем 
развивать экономические идеи, интуицию и (контрпримеры), ссылаясь только на такие геометрические 
объекты, что может быть значительно проще, чем работать с явными оценками. Последующие разделы 
проиллюстрируют это. 

4.5. Комплекс спроса 
Двойственный нашему взвешенному ценовому комплексу – это "комплекс спроса" (в пространстве 

продуктов). 
Определение 4.15: Пусть 𝐴 ⊆ ℤ𝑛 и 𝑢: 𝐴 → ℝ. 
1. Клетки комплекса спроса, 𝜎, для 𝑢 – это пакет 𝜎: = 𝑐𝑜𝑛𝑣(𝐷𝑢(𝐩)) для некоторого 𝐩 ∈ ℝ𝑛. 

2. Комплекс спроса ∑  𝑢 – это набор всех клеток комплекса спроса для 𝑢. 
3. Вершинами комплекса спроса являются его 0-клетки. 
4. Ребрами комплекса спроса являются его 1-клетки. 
5. Длина ребра – это число лежащих вдоль него примитивных целочисленных векторов, из которых 

оно образовано (т.е. его евклидова длина, деленная на евклидову длину параллельного примитивного 
целочисленного вектора). 

Легко видеть, что каждая клетка в ∑  𝑢  является рациональным многогранником. Кроме того, мы 
имеем следующее: 

Предложение 4.16: Комплекс спроса является рациональным многогранным комплексом с раз-
мерностью, равной 𝑐𝑜𝑛𝑣(𝐴). 

Мы поймем это Предложение с помощью альтернативного описания комплекса спроса, которое 
помогает интуиции, а также упрощает быстрое создание примеров. Во-первых, обратите внимание, что 
ясно, что справедливо следующее: 

Лемма 4.17: 𝐷𝑐𝑜𝑛𝑣(𝒖)(𝐩) = 𝑐𝑜𝑛𝑣(𝐷𝑢(𝐩)) для всех 𝐩 ∈ ℝ𝑛. 

Теперь 𝑐𝑜𝑛𝑣(𝑢) можно понимать как оценку делимых товаров. Таким образом, мы можем использо-
вать стандартную конструкцию для вогнутой оценки: любой ценовой вектор определяет гиперплоскость, 
касательную к графику оценки агента, которая соответствует этому графику при заданном агентом 
спросе на эту цену. Но поскольку 𝑐𝑜𝑛𝑣(𝑢) является лишь слабо вогнутой, некоторые касательные 

 
1 То есть возьмем любую достаточно маленькую окружность, расположенную вокруг точки в 𝐺 и вписанную в двумерную плос-

кость, перпендикулярную 𝐺.Все векторы 𝑉𝐹 должны быть направлены в одном направлении вокруг этой окружности. 
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гиперплоскости пересекаются с графом более чем в одной точке, а некоторые пакеты требований мно-
гозначны. 

На рисунке 4.2(а) показаны точки (𝐱, 𝑢(𝐱)) для всех 𝐱 ∈ 𝐴, а на рисунке 4.2(б) то же иллюстрируется 
с использованием столбцов. Возможные пакеты увеличиваются влево и вниз. Это наиболее четко вы-
явит двойственность между совокупным спросом и совокупной взвешенной ценой. 

 
 
 
 
 
 

 

(a) Табличное представление 
оценки, 𝑢(𝐱). 

(b) представление оценки с  
использованием столбцов. 

(с) "крыша" оценки (график 
𝑐𝑜𝑛𝑣(𝑢)). 

Рисунок 4.2. — Стоимостная оценка и ее «крыша). 
Источник – (Baldwin and Klemperer, 2014) 

Н рисунке 4.2(c) добавляется третье измерение График 𝑐𝑜𝑛𝑣(𝐰) называется "крышей" оценки. Ри-

сунок 4.2(c) иллюстрирует это. При любой цене 𝐩 пакеты 𝐱, востребованные в соответствии с оценкой 

𝑐𝑜𝑛𝑣(𝐰), т.е. те, что максимизируют 

𝑐𝑜𝑛𝑣(𝐰)(𝐱) −  𝐩 ∙  𝐱 = (−𝐩, 1) ∙ (𝐱, 𝑐𝑜𝑛𝑣(𝐰)(𝐱)). 

То есть 𝐱 запрашивается в точке p, если точка (𝐱, 𝑐𝑜𝑛𝑣(𝐰)(𝐱)) наиболее удалена от начала коорди-

нат в направлении этой цены (т.е. в направлении (−𝐩, 1)). Таким образом, пересечение крыши и опорной 

гиперплоскости представляет собой множество вида 𝜎̂ = {(𝐱, 𝑐𝑜𝑛𝑣(𝐰)(𝐱)) ∈ ℝ𝑛+1: 𝐱 ∈ 𝐷𝑐𝑜𝑛𝑣(𝑢)(𝐩)}, где 𝐩 

таково, что (−𝐩, 1) является нормалью к гиперплоскости. Эти множества называются гранями крыши (см. 

Определение 4.6, часть 2). Проецирование такой грани из ℝ𝑛+1 на ее первые 𝑛 координат (в ℝ𝑛) просто 

дает множество 𝐷𝑐𝑜𝑛𝑣(𝑢)(𝐩) = 𝑐𝑜𝑛𝑣(𝐷𝑢(𝐩)) для этого 𝐩. Итак, имеем: 

Лемма 4.18: 𝜎̂ ⊊ ℝ𝑛+1 – грань крыши проекции 𝜎̂ на ее первые 𝑛 координат – это клетка 𝜎 ⊊ ℝ𝑛 
комплекса спроса. 

Таким образом, проецирование граней крыши в ℝ𝑛 дает набор всех клеток комплекса спроса 
𝑐𝑜𝑛𝑣(𝐷𝑢(𝐩)). Это проиллюстрировано проекцией под крышей на рисунке 4.2(с) и комплексом спроса на 
рисунке 4.3(а).1 Более того, ясно, что грани крыши являются гранями многогранника, а именно выпуклой 
оболочкой точек (𝐱, 𝑢(𝐱)). Таким образом, эти грани образуют многогранный комплекс. Предложение 4.16 

следует из того факта, что проекция этого комплекса на его первые 𝑛 координат взаимно однозначна 

  
(a) ∑  𝒖  с сеткой целочисленных 

пакетов в 𝒄𝒐𝒏𝒗(𝑨). 
(b) Взвешенный LIP (𝓛𝒖, 𝒘𝒖); его 

ценовой комплекс двойственный 
по отношению к ∑  𝒖  

(с) другой взвешенный LIP, цено-
вой комплекс которого также двой-

ственный по отношению к ∑  𝒖  

РИСУНОК 4.3.—(a)–(b). Источник – (Baldwin and Klemperer, 2014) 

 
1 Изображение комплекса спроса начинается с клеток высшей размерности на сетке целочисленных наборов. Остальные клетки 

легко идентифицируются как грани клеток высшей размерности, в то время как сетка позволяет идентифицировать “длины” 

ребер и наборов в любой клетке. Мы опускаем оси, поскольку замена 𝐴 на 𝐴 + 𝐜 для некоторого 𝐜 ∈ 𝑍" и переопределение и, 

соответственно, приводит к комплексу спроса, двойственному тому же взвешенному ценовому комплексу. 
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Комплекс спроса и взвешенный предел оценки 𝑢, приведены на рисунке 4.3.(a); двойственные гео-
метрические объекты имеют одинаковый цвет, а затенение (черная вершина в 4.3 (a) не имеет двой-
ственного объекта в 4.3 (b)). Взвешенные LIP оценки, отличной от 𝑢, также двойственной по отношению 
к комплексу спроса 4.3 (a), показан в 4.3(c). 

На рисунке 4.3(а) показаны пять 2-мерные клетки (области), закрашенные в соответствии с соот-
ветствующими участками плоскостей крыши на рисунке 4.2(с). 2-мерные клетки разделены одиннадца-
тью ребрами (отрезками линии – 1-клетками), которые сами встречаются в семи вершинах (0-клетках) 
комплекса спроса. 

Только “белые” круги представляют вершины вершинах комплекса спроса. Серые и черные круги 
представляют связки, которые не находятся в вершинах комплекса спроса, поскольку они не являются 
однозначно востребованными ни по какой цене. Действительно, комплекс спроса не может подсказать, 
востребованы ли когда-либо такие невершинные связки, как эти. Однако он показывает, что если невер-
шинный пакет востребован по любой цене, то он востребован по цене (ценам), соответствующей тем 
клеткам, в которых он находится. Чтобы увидеть это, надо взять пересечение множества пакетов, вос-
требовнных по любой цене, с выпуклой оболочкой спроса по определенной цене 𝐩 и показать, что это 
множество равно 𝐷𝑢(𝐩). Во-первых, все пакеты в 𝐷𝑢(𝐩) находятся в этом пересечении. Во-вторых, из 

леммы 4.12, часть 1 следует, что если пакет 𝐱 востребован по любой цене, то 𝑢(𝐱) = 𝑐𝑜𝑛𝑣(𝑢)(𝐱). И напом-

ним из леммы 4.17, что 𝑐𝑜𝑛𝑣(𝐷𝑢(𝐩)) = 𝐷𝑐𝑜𝑛𝑣(𝑢)(𝐩). Если 𝐱 ∈ 𝐷𝑐𝑜𝑛𝑣(𝑢)(𝐩) удовлетворяет 𝑢(𝐱) = 𝑐𝑜𝑛𝑣(𝑢)(𝐱), 

то очевидно, что 𝐱 ∈ 𝐷𝑢(𝐩). Итак, доказана следующая лемма: 
Лемма 4.19 — Лемма о псевдоравновесных ценах (см. (Milgrom, and Strulovici, 2009 , теорема 18)): 

Если существует какая-либо цена, по которой требуется 𝐱, то для всех 𝐩, таких, что 𝐱 ∈ 𝐷𝑐𝑜𝑛𝑣(𝑢)(𝐩), сле-

дует, что 𝐱 ∈ 𝐷𝑢(𝐩). 

4.6. Двойственность  
Теперь можно увидеть поучительную (и прекрасную) двойственность между совокупностью спроса 

и совокупностью взвешенных цен.1 
Поскольку вершины комплекса спроса находятся в пакетах, которые однозначно востребованы по 

некоторой цене, они соответствуют UDR. И ребро комплекса спроса между вершинами 𝐱 и 𝐱′ указывает 

на существование цен 𝐩, для которых пакет спроса содержит оба этих пакета. Более того, такие 𝐩 обра-

зуют ((𝑛 − 1)-мерную) грань LIP, поскольку они определяются только одним ограничением равенства 
𝑢(𝐱) − 𝐩 ∙ 𝐱 = 𝑢(𝐱) − 𝐩 ∙ 𝐱. 2 И, как показано в предложении 4.4, 𝐩 ∙ (𝐱 − 𝐱′) = 𝑐𝑜𝑛𝑠𝑡 для всех этих ценовых 

векторов 𝐩.Таким образом, каждая граница комплекса спроса нормальна к грани, которая соответствует 
ей в LIP. И в более общем плане справедливо следующее: 

Предложение 4.20 —Двойственность: Существует биективное соответствие между комплек-
сом спроса и взвешенным ценовым комплексом, связывающее: вершины комплекса спроса с замыка-
ниями UDR; ребра комплекса спроса со взвешенными гранями LIP; и k-клетки 𝜎 комплекса спроса с 

(𝑛 − 𝑘)-клетками 𝐶𝜎 ценового комплекса для 1 ≤ k ≤ dim𝑐𝑜𝑛𝑣𝐴;такие, что: 

1. 𝜎 = 𝑐𝑜𝑛𝑣(𝐷𝑢(𝐩)) iff 𝐩 ∈ 𝐶𝜎
0; 

2. 𝐶𝜎 = {𝐩 ∈ ℝ𝒏: 𝛔 ⊆ 𝑐𝑜𝑛𝑣(𝐷𝑢(𝐩))}; 

3. обратные отношения включения: 𝜎 ⊊ 𝜎′ iff 𝐶𝜎′ ⊊ 𝐶𝜎; 

4. двойственные клетки ортогональны: (𝑝′ − 𝑝) ∙ (𝑥′ − 𝑥) = 0 для всех 𝐩, 𝐩′ ∈ 𝐶𝜎, 𝐱, 𝐱′ ∈ 𝛔; 

5. грань 𝐹𝜎 соответствуют ребрам 𝜎 длины 𝑤𝑢(𝐹𝜎). 
Комплекс спроса и взвешенный предел оценки на рисунке 4.2(а) изображены на рисунках 4.3(а) и 

4.3(b) соответственно; клетки, которые являются двойственными по отношению друг к другу, изобра-
жены в том же цвете. 

Черная точка в ∑  𝒖 , представляющая пакет (1,1), не имеет соответствующего ей объекта в TH – она 
"скрыта" внутри точки алого цвета в LIP. 

Таким образом, 0-клетки LIP по ценам (5, 7), (4, 2), (3,3) и (0,1), (1,2) двойственны фиолетовым, 
желто-зеленым и алым 2-клеткам комплекса спроса соответственно; девять граней LIP двойственны де-
вяти соответствующим образом оформленным краям комплекса спроса; и каждый из семи UDR вокруг 
LIP двойственен одному из семи пакетов в белых кругах, которые являются семью вершинами комплекса 
спроса. 

Обратите внимание, что темно-серый горизонтальный край в верхней части комплекса спроса про-
ходит через связку и имеет вес 2 (в смысле определения 4.15, часть 5). Он двойственен темно-серой 
вертикальной грани LIP, которая, соответственно, имеет вес 2 и обозначена таким образом (см. Пред-
ложение 4.4). Все остальные ребра этого комплекса спроса имеют длину 1; все остальные грани LIP 
соответственно имеют вес 1. 

 
1 Конструкция использует двойственность Лежандра-Фенхеля (Murota, 2003). В работах (Baldwin and Klemperer, 2014, 2019) ис-

пользуется теоретико-категориальная "двойственность", которая позволяет объекту иметь несколько эквивалентных "двой-

ственностей". 
2 Если в 𝐴, лежащем на ребре, есть дополнительные точки, они не накладывают дополнительных линейно независимых ограни-

чений на такое p; смотрите последующее обсуждение, относящееся к "темно-серому ребру". 
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Как Как отмечалось в предыдущем подразделе, ни серый пакет, ни черный пакет не находятся в 
вершине комплекса спроса, поскольку ни один из них заведомо никогда не востребован ни по какой цене, 
поэтому они также не соответствуют никаким UDR. 

Более того, ни LIP, ни комплекс спроса не могут сказать нам, является ли когда-либо востребован-
ным невершинный пакет, такое как одно из этих. Однако из леммы о псевдоравновесных ценах (лемма 
4.19) мы знаем, что, поскольку центральная волнисто-затененная (пятисторонняя) клетка комплекса 
спроса является единственной клеткой комплекса спроса, в которой находится черный пакет, соответ-
ствующая волнисто-затененная 0-клетка LIP, в которой этот пакет “скрыт” указывает единственную цену 
(1,2), по которой этот пакет может быть востребован. Аналогично, поскольку темно-серый горизонталь-
ный край в верхней части комплекса спроса является клеткой комплекса спроса с наименьшим разме-
ром, в которой находится серый пакет, соответствующая темно-серая вертикальная грань LIP, в которой 
этот пакет “скрыт”, указывает только цены (4, 𝑝2) для 𝑝2 ≥ 8—см. рис. 4.3(b)), при котором этот пакет 
может быть востребован. 

Фактически, согласно лемме 4.12, часть 1, (𝑥, 𝑢(𝑥)) находится в верхней части для невершинного па-

кета 𝐱 — и поэтому пакет востребован — тогда и только тогда, когда оценка 𝑢 аффинна в соответствующем 

диапазоне. Серый пакет является примером этого. Он находится в (1,0), и его значение, 4, является сред-

ним из значений, 0 и 8, для пакетов (0,0) и (2,0), поэтому он востребован по ценам {(4, 𝑝𝟐2): 𝑝2 ≥ 8}. 
Однако, если u не является вогнутым в не-вершинном расслоении, значение расслоения лежит 

строго под крышей, поэтому оно никогда не требуется - оно “перепрыгивается” при переходе между UDR. 
Черный пакет в центре комплекса спроса иллюстрирует это. Его стоимость по 𝑢 строго ниже его 

стоимости по 𝑐𝑜𝑛𝑣(𝑢), поэтому он находится строго под “крышей” (см. рис. 4.2(c)) и заведомо не востре-
бован ни по какой цене. Лемма о псевдоравновесных ценах (лемма 4.19) и Предложение 4.20, часть 1, 
позволяют охарактеризовать набор цен, по которым востребован пакет 𝐱, если он востребован по какой-
то цене: 

Следствие 4.21: Предположим, что 𝐶𝜎 является минимальной клеткой комплекса спроса, такой, 

что 𝐱 ∈ 𝜎, и что 𝐱 востребован по некоторой цене. Тогда 𝐱 ∈ 𝐷𝑢(𝐩) iff 𝐩 ∈ 𝐶𝜎. 
Наконец, обратите внимание, что для любого отдельного комплекса спроса существует множество 

взвешенных LIP, которые удовлетворяют соотношениям соответствия и ортогональности предложения 
4.20. Например, на рисунках 3(b) и 3(c) приведены два разных сбалансированных взвешенных значения 
— и, следовательно, две разные оценки, — которые оба являются двойственными по отношению к ком-
плексу спроса на рисунке 3(a). Таким образом, естественно сгруппировать вместе все оценки, комплексы 
спроса которых либо одинаковы, либо отличаются только постоянным сдвигом на некоторый пакет 𝐱: 

Определение 4.22: Две оценки 𝑢, 𝑢′ имеют одинаковый комбинаторный тип, если одинаковы их 

комплексы спроса, или если существует 𝐱 ∈ ℤ𝑛 такой, что 𝜎 ∈ ∑  𝑢 iff {𝑥} + 𝜎 ∈ ∑  𝑢′ . 
Легко перечислить все возможные комплексы спроса и примеры двойственных взвешенных LIPs, 

которые демонстрируют комбинаторный тип (таким образом, давая все “существенно разные” структуры 
спроса), если область не слишком велика – смотрите рисунки 10 и 11 примера B.2 в приложении B.2, где 
мы также приведите дальнейшее обсуждение рисунков 2 и 3. 

4.7. Представление в пространстве цен в сравнении с пространством продуктов 
Хотя взвешенный круг и комплекс спроса являются двойственными, существует важное различие: 

теорема об эквивалентности оценочного комплекса применима только к ценовому пространству. В про-
странстве продуктов, напротив, неверно, что каждый способ разделения 𝑐𝑜𝑛𝑣(𝐴) на рациональный мно-
гогранный комплекс дает комплекс спроса. (Смотрите (Maclagan, Sturmfels, 2015), рисунок 2.9, для под-
разделения, соответствующие отсутствию LIP и, следовательно, отсутствию оценки.) Также, по-види-
мому, не существует какой-либо простой проверки того, какие многогранные комплексы в пространстве 
продуктов соответствуют какой-либо оценке. Таким образом, хотя мы можем разработать примеры, 
например, для проверки гипотез, работая с геометрическими объектами в ценовом пространстве, и быть 
уверенными, что соответствующие оценки будут существовать, это трудно сделать в пространстве про-
дуктов. 

Кроме того, LIPs показывает фактические цены, по которым востребованы пакеты, в то время как 
комплекс спроса показывает только наборы пакетов, среди которых агенту безразличны некоторые 
цены. Поскольку также гораздо проще агрегировать оценки агентов в пространстве цен (см. раздел 5.3), 
мы в основном работаем в ценовом пространстве. 

Однако некоторая информация, которая только подразумевается во взвешенном LIP, становится 
очевидной в комплексе спроса, в пространстве продуктов. Например, в разделах 4.1 и 5 мы увидим, что 
низкоразмерная клетка LIP иногда “скрывает” важную деталь, которую гораздо легче увидеть в двухмер-
ном объекте более высокого размера в комплексе спроса. Более того, самый простой способ рассчитать 
предел конкретной оценки часто заключается в том, чтобы сначала найти комплекс спроса (например, 
легко перейти от рисунка 4.2(а) к рисунку 3(а), а затем, используя двойственность, к рисунку 4.3(б).; как 
правило, гораздо сложнее составить прогноз непосредственно на основе оценки. 

Тот факт, что различные представления полезны в разных контекстах, делает особенно ценной 
способность легко переключаться между ними, используя двойственность. 
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5. Типы спроса 

5.1. Определение типов спроса и сравнительная статика  
В предыдущем разделе мы видели, что фасетные нормали LIP описывают, как изменяется спрос 

между UDR (Предложение 4.4). Таким образом, они дают все возможные направления изменения спроса 
(если таковые имеются), которые, как правило, могут возникнуть в результате небольшого изменения 
цен. Таким образом, естественно классифицировать оценки по “типам спроса” в соответствии с этими 
нормалями граней. 

Затем тип спроса при оценке дает нам сравнительную статическую информацию, аналогичную ин-
формации, которую матрица Слуцкого предоставляет для оценки делимых товаров по единой цене. 

Определение 5.1: Пусть 𝒟 ⊊ ℤ𝑛 — набор ненулевых примитивных целочисленных векторов, таких, 

что если v g 𝒟, то -v € 𝒟. Тип спроса, определенный с помощью 𝒟, содержит значения, такие, что каждая 

грань ℒ𝑢 имеет вектор нормали в 𝒟. 
Например, оценка на рисунке 1(а) относится к типу спроса ±{(1,0), (0,1), (−1,1)}, как и многие другие 

оценки, такие как все те, что показаны на рисунках 5.8 (а)–(в). Оценка относится к любому типу спроса, 
который содержит нормали грани его LIP; ограничиваясь минимальным таким набором. Однако спра-
ведлива следующее утверждение: 

Предложение 5.2: Каждый тип спроса, определяемый конечным набором примитивных целочис-
ленных векторов 𝒟, является минимальным типом спроса для некоторой оценки. 

Доказательство.: Для каждой пары векторов ±{𝑣} ∈ 𝒟 выберите (любую) одну гиперплоскость, нор-
мальную к ним. Объединение этих гиперплоскостей является рациональным многогранным комплексом, 
и если применить вес 1 к каждой грани, то оно сбалансировано. Остается применить часть 1 теоремы об 
эквивалентности оценочного комплекса (теорема 4.14). Ч.Т.Д. 

В силу двойственности (Предложение 4.20) мы могли бы эквивалентно классифицировать оценки 
в соответствии с направлениями краев их комплексов спроса.1 Но из нашего описания становится ясно, 
что тип спроса обеспечивает общую сравнительную статику. Как обычно, мы говорим, что свойство вы-
полняется для “общего” 𝐩 ∈ ℝ𝑛, если оно выполняется для всех p в плотном открытом подмножестве ℝ𝑛. 

Предложение 5.3: Следующее эквивалентно для оценки 𝑢: 

1. 𝑢 относится к типу спроса 𝒟; 
2. для любого 𝐭 ∈ ℝ𝑛 и для общего 𝐩 ∈ ℝ𝑛, если ∃𝜖 > 0 такие, что p и 𝐩 + 𝜖𝐭 находятся в разных 

UDR, и такие, что ∄𝜖′ ∈ (0, 𝜖) такие, что 𝐩 + 𝜖′𝐭 находится в третьем отдельном UDR, то разница 

между связками, требуемыми в p и 𝐩 + 𝜖𝐭, находится целое число, кратное некоторому вектору в 𝒟. 
Доказательство.: Обычно цена p является ценой UDR, а прямая линия от p в направлении t пере-

секает грани только внутри них. При условии 2 таким образом пересекается только одна грань, поэтому 
изменение спроса задается вектором в 𝒟. То, что условия 1 и 2 эквивалентны, теперь непосредственно 
вытекает из предложения 4.4. Ч.Т.Д. 

Более того, поскольку область A конечна, реакция на любое конкретное изменение цены может 
быть, в общем, разбита на серию шагов такого вида. И что важно, как мы увидим, Предложение 3.3 
раскрывает тесную взаимосвязь между типами спроса и стандартными экономическими описаниями 
сравнительной статики. 

В работе (Baldwin and Klemperer, 2014) обсуждались изменения неустойчивых цен (т.е. тех, которые 
не начинаются с UDR), а также дали другие эквивалентные характеристики типов спроса, но для наших 
целей будет достаточно предложения 5.3. 

5.2. Заменители, дополнения и другие “Типы спроса”  
Из этого прямо следует, что типы спроса дают простые характеристики знакомым понятиям, таким 

как обычные заменители, обычные дополнения и “сильные заменители”. Эти характеристики легче обоб-
щить, чем стандартные, основанные на непосредственном наложении ограничений на 𝑢. Более того, они 
более четко выявляют и объясняют такие особенности, как отсутствие симметрии между заменителями 
и дополнениями. 

Начнем с напоминания стандартных определений: 

Определение 5.4—стандартное: Пусть 𝑢: 𝐴 → ℝ. 

1. 𝑢 является обычной заменой, если для любых цен UDR 𝐩′ ≥ 𝐩 с 𝐷𝑢(𝐩) = {𝐱} и 𝐷𝑢(𝐩′) = {𝐱′} мы 
имеем  𝑥𝑘

′ ≥ 𝑥𝑘 для всех 𝑘 таких, что 𝑝𝑘
′ = 𝑝𝑘. 2 

2. 𝑢 является обычным дополнением, если для любых цен UDR 𝐩′ ≥ 𝐩 с 𝐷𝑢(𝐩) = {𝐱} и 𝐷𝑢(𝐩′) = {𝐱′} 
мы имеем 𝑥𝑘

′ ≤ 𝑥𝑘 для всех 𝑘 таких, что 𝑝𝑘
′ = 𝑝𝑘. 

 
1 В работе Данилова, Кошевого и их соавторов эти векторы рассматривались в пространстве продуктов. Однако они не исполь-

зовали их для создания таксономии спроса или, например, не интерпретировали их как предоставляющие сравнительную ста-

тистическую информацию. В работе (Baldwin and Klemperer, 2012, 2014, 2019), напротив, разрабатывается общая концепцию 

для их понимания в экономических терминах. 
2 Здесь  𝑝 ≥  𝑝 означает выполнение неравенства по компонентам. Термин «обычные заменители» означает то, что большинство 

других авторов называют «заменителями» 
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3. 𝑢 – сильные заменители, если, когда мы рассматриваем каждую единицу каждого товара как 
отдельный товар, это оценка для обычных заменителей. 1 

Легко использовать Предложение 5.3, чтобы предоставить альтернативные, эквивалентные опре-
деления этих понятий как типов спроса. Для заменителей мы определяем и доказываем следующее: 

Определение 5.5: (n-мерные) векторы обычных заменителей представляют собой набор ненуле-
вых примитивных целочисленных векторов 𝑣 ∈ ℝ𝑛, содержащих не более одной записи с положительной 
координатой и не более одной записи с отрицательной координатой. Они определяют тип спроса на 
обычные заменители (для 𝑛 товаров). 

Предложение 5.6: Оценка является обычной оценкой заменителей, если и только если она от-
носится к типу спроса на обычные заменители. 

Доказательство. Пусть изменение спроса с цены UDR 𝐩 на цену UDR 𝐩′ ≥ 𝐩 происходит таким 
образом, что 𝐷𝑢(𝐩′) = 𝐷𝑢(𝐩). Запишем 𝐭: = 𝐩′ − 𝐩 и {𝐱} = 𝐷𝑢(𝐩). Согласно предложению 3.3, мы можем 

выбрать 𝐩̃ сколь угодно близко к 𝐩 таким образом, что если 𝐩̃" = 𝐩̃ + 𝜖𝐭 находится в первом UDR, отлич-

ном от 𝐱, на линии от p в направлении t, и если x" требуется в 𝐩", то 𝐱" − 𝐱 является целое число, кратное 
обычному вектору замещений. В частности (поскольку UDR открыты), мы можем выбрать такой 𝐩̃, чтобы 

он находился в том же UDR, что и 𝐩, и такой, чтобы 𝐩 + 𝜖𝐭 находился в замыкании UDR, содержащего p", 
подразумевая, что 𝐱" ∈ 𝐷𝑢(𝐩 + 𝜖𝐭). 

По стандартным результатам, (𝐱" − 𝐱) ∙ (𝐩̃" − 𝐩̃) < 0 (см., например, (Mas-Colell, Whinston and Green, 

1995, Предложение 3.E.4). Но 𝐩̃" − 𝐩̃ = 𝜖𝐭 = 𝜖(𝐩′ − 𝐩) ≥ 0. Таким образом, 𝐱" − 𝐱 должно иметь строго от-

рицательную координату для некоторого товара, цена которого строго возрастает от p к p'. Но 𝐱" − 𝐱 
является целым числом, кратным обычному вектору замещений, и поэтому имеет не более одной отри-
цательной координаты, поэтому спрос слабо возрастает на все товары, цена которых не меняется. 

Если мы будем применять этот процесс повторно, пока не достигнем окончательной цены в том же 
UDR, что и p, мы будем делать один и тот же вывод на каждом шаге. Итак, в целом, Определение 5.4, 
часть 1 выполняется. 

Рисунки 5.1 и 5.3(b)–3(c) иллюстрируют владение имуществом-заменителем; Рисунки 5.4 (b)-54(d), 
приведенные ниже, покажут, что это не удается. Таким образом, вектор, который нормален к грани вы-
ступа для заменителей, не может иметь двух ненулевых значений одного и того же знака. Чтобы понять 
необходимость этого, рассмотрим LIP с гранью, первая и третья координаты вектора, нормали которого 
имеют одинаковый знак. Повышение цены либо на товар 1, либо на товар 3 может привести нас к дру-
гому результату — снижению спроса как на товары 1, так и на товары 3. Таким образом, этот аспект 
создает взаимодополняемость по некоторым ценам и поэтому не может быть частью предложения за-
менителей. Смотрите пример В.3 (Baldwin, Klemperer? 219)  для более подробного обсуждения. 

Что касается комплементов, то изменение цены, снижающее спрос на товар, может, конечно, сни-
зить (но не увеличить) спрос на другие товары: 

Определение 5.7: (𝑛-мерные) векторы обычных дополнений представляют собой набор ненулевых 
примитивных целочисленных векторов 𝒗 ∈ ℤ𝑛, все ненулевые элементы координат которых имеют оди-

наковый знак. Они определяют тип спроса на обычные дополнения (для 𝑛 товаров). 
Итак, применяя Предложение 5.3 таким же образом, как и в доказательстве предложения 5.6:  
Предложение 5.8: Оценка является обычной дополняющей оценкой, если и только если она от-

носится к типу обычного дополняющего спроса. 
Отсутствие симметрии между заменителями и дополнениями и причина этого теперь ясны: обыч-

ные векторы дополнений могут иметь любое количество ненулевых элементов (одного и того же знака), 
но любая пара ненулевых элементов в обычном векторе заменителей должна иметь противоположные 
знаки, поэтому обычные векторы заменителей могут иметь по крайней мере максимум две ненулевые 
записи. 

Характеристика сильных заменителей как типа спроса также дает их интуитивное описание: 
Определение 5.9: Векторы сильных заменителей – это те ненулевые значения 𝒗 ∈ ℤ𝑛, которые 

имеют не более одной записи +1, не более одной записи -1 и никаких других ненулевых записей. Они 
определяют тип спроса на сильные заменители. 

Предложение 5.10 — см. Болдуин и Клемперер (2014, следствие 5.20); и (Shioura and Tamura, 2015, 
теорема 4.1(i)): Оценка является сильной заменой, если и только если она вогнута и относится к 
типу спроса на сильные заменители. 

Таким образом, на рисунках 1(а), 4(а) и 8(а)–(в) показаны оценки сильных заменителей.  
Сейчас, в разделе 5.2 будет показано, что типы спроса также позволяют охарактеризовать важные 

новые классы оценок. 

 
1Это эквивалентно определению (Milgrom and Strulovici, 2009) — см. (Danilov, Koshevoy and Lang, 2003, следствие 5). Существует 

множество других эквивалентных определений (Shioura and Tamura, 2015), в частности, "М -вогнутость" оценки (Murota and 
Shioura1999). Когда существует только одна единица каждого товара, это также эквивалентно “грубым заменителям” (Kleso 

and Crawford, 1982), но это название не проводит различия между обычными и сильнодействующими заменителями, когда 

доступно несколько единиц. 
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Переупаковка товаров, так что любая целочисленная упаковка все еще может быть получена путем 
покупки и продажи целочисленного набора новых пакетов, соответствует, конечно, унимодулярному из-
менению базиса, которое искажает границу, но сохраняет свою природу как “сложного”. В частности, для 
унимодулярной 𝑛 × 𝑛 матрицы 𝐺, определяется (как это стандартно) “откат” оценки 𝑢: 𝐴 → ℝ как 

𝐺∗𝑢: 𝐺−1𝐴 → ℝ через 𝐺∗𝑢(𝐱): = 𝑢(𝐺𝐱). Тогда выполняется следующее): 

Предложение 5.11—ср., например, Гурман (GORMAN, 1976, стр. 219–220): Пусть 𝑢: 𝐴 → ℝ, пусть 𝐺 
– унимодулярная матрица 𝑛 × 𝑛, и пусть 𝐺∗𝑢 – откат от 𝑢 на 𝐺. 

1. 𝐱 ∈ 𝐷𝑢(𝐩) iff 𝐺−1𝐱 ∈ 𝐷𝐺∗𝑢(𝐺𝑇𝐩); 

2. ℒ𝑢𝐺∗𝑢 = 𝐺𝑇ℒ𝑢 ∶= {𝐺𝑇𝐩: 𝐩 ∈ ℒ𝑢; 

3. 𝑢(∙) относится к типу спроса 𝒟, тогда и только тогда, когда 𝐺∗𝑢(∙) относится к типу спроса 𝐺−1𝒟: =
{𝐺−1V: V ∈ 𝒟}.  

Пример В.4 из (Baldwin and Klemperer, 2019) дает иллюстрацию. 
Некоторые экономические свойства оценок, конечно, изменяются в результате таких преобразова-

ний от одного типа спроса к другому: в частности, местные компромиссы (так, являются ли оценки заме-
нителями или дополнениями и т.д.) Но многие важные свойства сохраняются — см. Предложение 4.7 
ниже о равновесии, а также (Baldwin and Klemperer, 2014), особенно раздел 5. Итак, полезно знать, 
например, что следующие типы спроса являются просто унимодулярными базисными изменениями 
сильных заменителей: 

"Последовательные игры" см. (Greenberg and. Weber, 1986), а также (Danilov, Koshevoy and Lang, 

2003). Предварительное умножение векторов сильных заменителей, 𝑒𝑖 и (𝑒𝑖 − 𝑒𝑗), на верхнюю треуголь-

ную матрицу 1s (соответствующей размерности) дает векторы ∑ 𝑒𝑘𝑗
𝑘=1  и ∑ 𝑒𝑘𝑖

𝑘=𝑗+1  для 𝑖 > 𝑗 соответ-

ственно (и их отрицания). Это тип спроса на товары, которые имеют естественный фиксированный заказ 
и для которых любая непрерывная коллекция товаров может рассматриваться любым агентом как до-
полнение. Например, оценки для полос радиочастотного спектра или для "участков" морского дна, кото-
рые будут разрабатываться для морского ветра, могут иметь такую форму. 

"Обобщенные валовые оценки заменителей и дополнений". Предварительное умножение векторов 

сильных заменителей на матрицу, сформированную из {𝑒𝑖: 𝑖 ≤ 𝑘} ∪ {−𝑒𝑖 : 𝑖 > 𝑘} для некоторого 𝑘, дает 
тип спроса, при котором товары могут быть разделены на две группы, причем товары внутри одной 
группы являются сильными заменителями, и каждый товар также может быть пример 1:1 взаимодопол-
няемость с любым товаром из другой группы.  

5.3. Типы спроса и совокупный спрос 
Важной особенностью нашей классификации типов спроса, которая, в частности, значительно об-

легчает изучение равновесия, является то, что тип спроса, когда агрегируются оценки от нескольких 
агентов, является просто объединением наборов векторов, которые формируют типы спроса отдельных 
агентов. 

Итак, теперь 𝐽 – конечное множество агентов: агент 𝑗 ∈ 𝐽 имеет оценку 𝑢𝑗 для целых наборов в 

конечном множестве 𝐴𝑗 . Их совокупный спрос – это, конечно, сумма индивидуальных запросов (по Мин-
ковскому), но, чтобы применить к этому наши методы, мы хотим рассматривать это как требование од-
ного “совокупного” агента. 

Определение 5.12: Совокупная оценка {𝑢𝐽: 𝑗 ∈ 𝐽} – это оценка 𝑢𝐽 с областью 𝐴 = ∑ 𝐴𝑗
𝑗∈𝐽  такая, что 

𝐷𝑢𝐽(𝒑) = ∑ 𝐷𝑢𝑗(𝐩) ∀𝑗∈𝐽 𝐩 ∈ ℝ𝑛. 

Агрегированные оценки не определены однозначно. Однако это не имеет значения: поскольку 
наборы совокупного спроса однозначны, такие свойства, как вогнутость агрегированных оценок, также 
однозначны, а взвешенный по совокупности LIP уникален. (Тот факт, что мы можем построить совокуп-

ный LIP из отдельных LIP, не зная формы 𝑢𝐽 — то есть без использования какой–либо громоздкой фор-

мулы для 𝑢𝐽 – является важным преимуществом агрегирования в пространстве цен.) 
В остальной части этого подраздела доказывается и обсуждается следующая лемма: 

Лемма 5.13: Задан конечный набор оценок {𝑢𝐽: 𝑗 ∈ 𝐽}): 
1. существует совокупная оценка 𝑢𝐽; 
2. ℒ𝑢𝐽 = ⋃ ℒ𝑢𝑗𝑗∈𝐽 , 

3. если 𝐹 является гранью ℒ𝑢𝐽, то 𝑤𝑢𝐽(𝐹) = ∑ 𝑤𝑢𝑗𝐹𝑗∈ℱ (𝐹𝑗), в котором ℱ – это множество всех гра-

ней отдельного ℒ𝑢𝑗, которые содержат 𝐹. 

Следствие 5.14: Вся совокупность индивидуальных оценок относится к типу спроса 𝒟, если каж-
дая совокупная оценка каждого конечного подмножества из них относится к типу спроса 𝒟. 

Например, на рисунках 5.4 (а)-(б) показаны оценки Элизабет и Пола для гостиничных номеров в 
нашем вводном примере, если мы расширим обе оценки до полной области {0,l}2. Элизабет рассматри-
вает комнаты как заменители; ее оценка составляет 𝑢𝑠(𝑥1, 𝑥2) = 𝑚𝑎𝑥{40𝑥1, 30𝑥2} (рис. 4(a)). Пол рассмат-
ривает их как взаимодополняющие; его оценка 𝑢𝑐(𝑥1, 𝑥2) = 𝑚𝑖𝑛{50𝑥1, 50𝑥2} (рис. 4(b)). 

Легко видеть, что набор совокупного спроса состоит из уникального пакета, если это делают все 
индивидуальные наборы спроса (и, таким образом, для доказательства леммы 5.13, часть 2; см. также 
(Murota, 2003), раздел 11.2). Таким образом, на рисунке 4(c) показаны совокупные значения LIP ℒ𝑢(𝑠,𝑐) для 
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оценок 𝑢𝑠 и 𝑢𝑐. Очевидно, что тип спроса содержит индивидуальные оценки, если он содержит какую-
либо совокупную оценку (следствие 5.14). 

Из совокупного LIP мы можем получить новый взвешенный ценовой комплекс обычным способом 
(лемма 4.9). Его клетки являются пересечениями ячеек из отдельных ценовых комплексов. Таким обра-

зом, цена (30,20) на рисунке 4(c) представляет собой 0-ячейку на границе четырех различных граней. 

Запишите 𝛱 для подкомплекса ячеек LIP. Изменение совокупного спроса между любой парой цен пред-
ставляет собой сумму изменений индивидуального спроса. Таким образом, вес любой грани 𝐹 совокуп-

ного выступа равен сумме весов всех граней 𝐹′ отдельных выступов, для которых 𝐹 ⊆ 𝐹′ (что доказывает 

лемму 5.13, часть 3). И поскольку взвешенный многогранный комплекс (𝛱, 𝑤) является производным от 
сбалансированных комплексов, он сам по себе сбалансирован, и поэтому (используя теорему 4.14, часть 
1) он является пределом некоторой оценки (таким образом, выполняется лемма 5.13, часть 1). 

 
Рисунок 5.4. — Результаты: (а) оценки; простого замещения и (б) простой дополняющей оценки.  

Источник – (Baldwin and Klemperer, 2019)  

Совокупный результат: (c) показанных оценок заменителей и дополнений; и (d) показанной оценки 
заменителей и дополнительной оценки, при которой совокупность обеих комнат вместе имеет более 

высокую стоимость (которая превышает 𝑢𝑠(1,0) + 𝑢𝑠(0,1)). 
Однако невозможно найти комплекс спроса для совокупной оценки, используя только отдельные 

комплексы спроса: комплекс спроса не соответствует уникальной оценке, и разные оценки могут агреги-
роваться по-разному. 

Например, комплексы спроса, соответствующие LIP на рисунках 5.4 (а)-(б), показаны на рисунках 
5.5(а)-(в). Комплекс спроса, соответствующий их совокупному пределу (рис. 4(в)), показан на рис. 5(в); 

его область равна {0,1}2 +  {0,1}2 = {0,1,2}2. Если оценка Пола увеличится до 𝑢𝑐∗(𝑥1, 𝑥2) =
𝑚𝑖𝑛{100𝑥1, 100𝑥2}, то его комплекс спроса останется таким же, как на рисунке 5(b). Однако LIP ℒ𝑢(𝑠,𝑐∗) 

показан на рисунке 4(d), а его комплекс спроса соответствует комплексу спроса на рисунке 5(d). Таким 
образом, не существует уникального комплекса совокупного спроса, соответствующего комплексам 
спроса на рисунке 5(a) и рисунке 5(b). 

 
Рисунок 5.5. —Комплексы требований, аналогичные показанным на рисунках 4(а)–(г), когда каждая грань 

имеет вес 1. (Пакеты в областях оценок показаны без цветовой маркировки.) 
Источник – (Baldwin and Klemperer, 2014) 

5. Механизмы 
Настоящий раздел – краткий пересказ (Crowwell and Tran, 2016). Выбор именно этой работы связан 

с тем, что в ней наиболее ярко представлена роль тропической геометрии с демонстрацией ее особен-
ностей. Работа находится в свободном доступе в https://arxiv.org/pdf/1606.04880v1 . 

Согласно (Crowwell and Tran, 2016, 2018) механизмы – это игры, разработанные для достижения 
целевого результата в экономике с информационными ограничениями. Хорошо продуманный механизм 
правдиво выявляет личную информацию агентов с учетом их стратегического поведения. Важный класс 
составляют механизмы с совместимой со стимулами доминирующей стратегией (D-IC). При квазилиней-
ных полезностях классическая теорема Роше (Rochet, 1987) утверждает, что механизм является (D-IC) 
тогда и только тогда, когда все циклы на определенном взвешенном графе неотрицательны. С этим 
условием, известным как циклическая монотонность (Rockafellar, 1970), довольно трудно работать в тео-
рии. Многие работы были посвящены выявлению областей, в которых для (D-IC) достаточны более про-
стые условия, такие как слабая монотонность, см. (Braverman, Hassidim, and Monderer, 2010) и дополни-
тельные ссылки в (Sergeev, 2009). В частности, Сакс и Ю (Saks and Lan Yu, 2005) показали, что если 

https://arxiv.org/pdf/1606.04880v1
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пространство типов выпуклое, то слабая монотонность подразумевает (D-IC). В (Ashlagi, et all 2010) по-
казано обратное: если пространство типов не является выпуклым, то можно построить механизм, кото-
рый является слабо монотонным, но не (D-IC). 

Статья (Crowwell and Tran, 2016) содержит три основных результата. Для пространства произвольного 
типа 𝑇 дана геометрическая характеристика всех возможных механизмов (теорема 4.2), всех возможных 
слабомонотонных механизмов (теорема 4.11) и всех возможных (D-IC) механизмов (теорема 4.6), которые 
могут возникнуть на 𝑇. Эти результаты упрощают проверку и визуализацию совместимости стимулов как 
теоретически, так и вычислительно. В частности, получены простые доказательства ряда известных ре-
зультатов, в том числе результатов (Saks and Yu, 2005) и (Ashlagi, et all, 2010. Предлагаемые доказатель-
ства дают четкое представление о том, как правило распределения и геометрия пространства типов вли-
яют на (D-IC) и слабую монотонность, при этом они значительно короче существующих. 

Предлагаемая в (Crowwell and Tran, 2016) характеристика также позволяет унифицировать резуль-
таты об эквивалентности доходов, такие как приведенные в (Chung and Olszewsk, 2007; Vohra, 2011). 
Полученная здесь характеристика эквивалентности доходов подчеркивает роль геометрии. Несмотря на 
то, что они менее общие, чем у (Heydenreich et all, 2009), эти результаты явно проясняют взаимодействие 
правил распределения с геометрией пространства типов для эквивалентности доходов. Что еще более 
важно, это показывает, как предположения, относящиеся к эквивалентности доходов и слабой монотон-
ности, могут различаться и почему. Например, они создают пространства типов, для которых суще-
ствуют различные реализуемые правила, которые могут быть или не быть эквивалентны доходу. 

6 Аукционы 
Настоящий раздел посвящен не столько тропической математике, сколько реальным фактом ее 

эффективного применения. Для начала стоит сказать спасибо Полу Клемперероу за подробное описа-
ние событий, в которых он участвовал (Klemperer, 2008). Фактически он по горячим следам описал и 
схему аукциона и события, предшествующие проведения аукциона, организованного в конце 2007 – 
начале 2008 года, чтобы помочь Банку Англии справиться с кредитным кризисом, и упущенные США 
возможности по использованию той же схемы, но начнем с проблемы. В своей статье Клемперер не 
приводит полную информацию о конкретных целях и ограничениях Банка Англии. Обсуждаются не все 
проблемы Банка Англии, и некоторые из вопросов, которые обсуждаются, имеют незначительное значе-
ние для Банка Англии или вообще не имеют никакого значения. Более того, общее решение, которое 
Клемперер описывает в своей статье, содержит гораздо больше функций, чем, вероятно, потребуется 
Центральному банку. 

6.1. Проблема 
Кредитный кризис, ставший проблемой Банка Англии, начался в начале августа 2007 года с краха 

Northern Rock1 в середине сентября начался осенью 2007 года. Только через несколько месяцев после 
начала кредитного кризиса Банк проконсультировался Клемперером, поскольку ситуация заставила. 

В конце сентября и первой половине 
октября Банк Англии провел четыре аукци-
она по предоставлению банкам дополни-
тельной ликвидности, но ни на один из них 
не поступило заявок (по причинам, которые 
Клемперер не счел нужным комментиро-
вать. Вскоре после этой неудачи банк про-
консультировался с Клемперером и тот по-
лучил помощь от Джереми Бюлова и Дани-
эля Маршалека. Начиная с декабря, Банк 
проводил дополнительные простые (более 
успешные) аукционы, разрабатывая и рас-
сматривая идеи, обсуждаемые здесь. После 
февраля 2008 года в исходных идеях прак-
тически ничего не изменилось, но сохраняю-
щаяся нестабильность на финансовых рын-
ках и тот факт, что простые аукционы, начав-
шиеся в декабре 2007 года, достигали ос-
новных целей Банка, означали, что процесс 
консультаций с контрагентами и т.д. начался 
только в октябре 2008 года. 

Банк срочно хотел предоставить банкам ликвидность и был готов принять более широкий спектр 
залогового обеспечения, чем он традиционно принимал, если это было необходимо для предоставления 
кредита на желаемую сумму. Но при более слабом обеспечении он хотел получить соответственно 

 
1 Northern Rock — британский банк, основанный в. 1965 году В лучшие времена расцвета банка вкладчики хранили в нём 24 

миллиарда фунтов стерлингов своих средств и в нём работало до 6400 человек. 

Рисунок 6.1. Northern Rock bank (Сетябрь. 2007) 
Источник – (Klemperer, 2016) 

https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D1%82_%D1%81%D1%82%D0%B5%D1%80%D0%BB%D0%B8%D0%BD%D0%B3%D0%BE%D0%B2


ЦИФРОВАЯ ЭКОНОМИКА  5(35) 2025 
 

60 

более высокую процентную ставку. Кроме того, поскольку финансовые рынки движутся быстро, любой 
аукцион должен был проводиться в одно мгновение – многоэтапный аукцион был исключен, так как участ-
ники торгов, которые ранее подали самые высокие ставки, могли передумать о желании стать победите-
лями до закрытия аукциона, а также потому, что сами финансовые рынки могли подвергнуться влиянию 
эволюцией аукциона, увеличивающей трудности проведения торгов и провоцирует манипуляции. 

Одна и та же схема эффективна для проведения аукциона с несколькими товарами-заменителями 
в тех случаях, когда проведение нескольких раундов аукционов невозможно. Это простой в использова-
нии статический механизм (закрытая заявка). Но, подобно двустороннему аукциону с одновременным 
проведением нескольких раундов, он позволяет участникам торгов делать ставки на множественный до-
ступ одновременно, а участникам торгов выбирать функции поставки по всем активам. Таким образом, 
заявки на различные активы вынуждены конкурировать друг с другом. Такая схема обеспечивает боль-
ший объем, большую эффективность, лучшую информацию и больший доход, чем проведение несколь-
ких статических аукционов (с закрытыми ставками). 

Аналогичная проблема, с которой сталкивается Банк, возникает у фирмы, которая может постав-
лять несколько разновидностей продукта (по разным ценам), но с общим ограничением производствен-
ных мощностей, клиентам с различными предпочтениями между этими разновидностями продукта, и где 
транзакционные издержки или другие временные трудности делают проведение аукционов в несколько 
раундов невозможным. (Многочисленные разновидности продукта могут включать разные пункты до-
ставки, разные гарантии или разные ограничительные условия использования.) Потенциальный эффект 
обратной связи между финансовыми рынками и любым динамичным аукционом кажется особенно серь-
езным в этом контексте. 

В начале 2008 года Клемперер предложил свою версию Банку Англии, проводившему консультации 
по этому предложению. В ходе консультаций выяснилось, что Пол Милгром независимо развивал свя-
занные идеи.1 В его работе (Milgrom, 2008) показывает, как очень элегантно представлять широкий 
спектр предпочтений участников торгов, в то же время ограничиваясь заменяемыми предпочтениями, а 
его высокоэффективный подход линейного программирования приводит к целочисленному распределе-
нию, когда требования и ограничения целочисленные – это свойство может быть очень полезным. важно 
в некоторых приложениях, даже если это не относится к такому контексту, как Банк Англии, для которого 
предложение Клемперер кажется более простым и прозрачным. А осенью 2008 года Клемперер, 
Милгром и другие сделали аналогичное предложение Казначейству США (которое могло бы принять 
аналогичный дизайн, если бы не отказалось от своих планов по покупке низкокачественных активов). 

С аналогичной проблемой был связан план Казначейства США по программе возвращения про-
блемных активов (TARP)2 осенью 2008 года, предполагалось потратить до 700 миллиардов долларов на 
покупку низкокачественных ценных бумаг, обеспеченных ипотекой. Как указывалось выше, волатиль-
ность финансовых рынков и их чувствительность к новостям сделали бы проведение многораундового 
аукциона проблематичным.  

Схема, подобная принятой Банком Англии, была бы полезна и могла бы быть использована в США, 
если бы Министерство финансов США придерживалось своего первоначального плана потратить боль-
шую часть своего финансирования TARP в размере 700 миллиардов долларов на покупку проблемных 
ценных бумаг, обеспеченных ипотекой.  

Джереми Бюлоу, Джон Левин, Пол Милгром и Клемперер сделали совместное предложение Мини-
стерству финансов США. Другие консультанты также предлагали статичную схему (закрытая заявка), и 
вполне вероятно, что была бы использована схема закрытой заявки, хотя некоторые консультанты, 
включая Аусубела и Крамтона (Ausubel, and Cramton, 2008), утверждали, что одновременный многора-
ундовый аукцион был жизнеспособен, несмотря на трудности, описанные выше. 

А поскольку существовало большое количество тесно связанных, но дифференцированных акти-
вов, некоторые из которых имели очень концентрированную собственность, аукцион, на котором поку-
патель просто заранее указывал количество каждого типа ценных бумаг для покупки, не обеспечил бы 
адекватной конкуренции. 

Рассматриваем Центральный банк (далее “Банк”), который хочет предоставить ссуду на опреде-
ленную сумму и предпочитает делать это под более качественное обеспечение и по более высоким 
процентным ставкам. Аукцион должен состояться в один и тот же момент времени. 

Наиболее простой подход (и тот, который принят Банком Англии в ожидании разработки этих пред-
ложений) заключается в проведении отдельных аукционов с закрытыми ставками для обеспечения вы-
сокого и низкого качества. 

Конечно, у такого подхода есть существенная проблема, заключающаяся в том, что Банк вынужден 
выбирать, какую сумму предложить под каждое обеспечение, прежде чем изучать предпочтения участ-
ников торгов. Кроме того, участники торгов хотели бы выяснить разницу между расчетными ценами раз-
личных аукционов перед началом торгов, но не могут этого сделать и вместо этого вынуждены строить 

 
1 Поэтому позже они работали вместе с Министерством финансов США 
2Troubled Asset Relief Program  
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предположения о том, какой аукцион предложит им наилучшую стоимость1. Таким образом, результаты 
непредсказуемы и неэффективны: средства вряд ли достанутся тем, кто их больше всего ценит, а те 
участники торгов, которые их выиграют, могут быть неэффективно распределены между залоговыми 
активами. 

Кроме того, когда средства под отдельные залоги выставляются на аукцион отдельно, предложе-
ния, сделанные под одно обеспечение, не обеспечивают конкурентной дисциплины по отношению к 
предложениям, сделанным под другие залоги. Таким образом, каждый отдельный аукцион более чув-
ствителен к влиянию рынка, манипуляциям и информационной асимметрии, чем если бы предложения 
всех участников торгов напрямую конкурировали друг с другом на одном аукционе. Процентные ставки 
(т.е. доходы участников торгов) соответственно, как правило, ниже. 

Эти проблемы также снижают ценность аукционов как источника информации для Банка и других 
участников рынка. Те же проблемы могут также привести к снижению участия в аукционах, что создает 
эффект обратной связи "второго раунда", который еще больше усугубляет проблемы. 

Короче говоря, прямолинейный подход приводит к плохим результатам как для участников торгов, 
так и для того, кто их принимает. Решение, предложенное Полом Клемперером, позволило реешить эти 
проблемы. 

6.2. Решение 
Предложение по своей концепции простое: разрешить каждому контрагенту (участнику торгов) 

предлагать один или несколько пакетов предложений; каждый пакет содержит Предложение о процент-
ной ставке для одного или нескольких залогов, и предложения в каждом пакете являются взаимоисклю-
чающими. Участник торгов (Банк) просматривает все пакеты заявок и затем выбирает свои предпочти-
тельные процентные ставки (отдельную единообразную ставку для каждого обеспечения) в соответ-
ствии с некоторым заранее установленным (но не обязательно объявленным заранее) правилом. 2 

Из каждого пакета заявок, предложенных каждым участником торгов, Банк принимает ту, которая 
дает участнику торгов наибольший профицит, оцененный по этим процентным ставкам3 (или не делает 
ставку, если все заявки дали отрицательный профицит). 

Идея состоит в том, чтобы позволить Банку изучить спрос, прежде чем выбирать, какую сумму пред-
ложить под каждое обеспечение, в то же время позволяя каждому участнику торгов достичь наилучшего 
возможного результата, учитывая процентные ставки, которые Банк фактически выбирает. (Делая 
условные ставки, участники торгов, по сути, могут решить, сколько и под какое обеспечение брать 
взаймы, ознакомившись с выбранными процентными ставками.) 

Вопрос, конечно, в том, действительно ли это может быть реализовано и может ли это быть сде-
лано простым и надежным способом, а также достаточно легким для того, чтобы участники торгов по-
няли, что они рады участвовать. Сейчас мы покажем, что это осуществимо. Мы начнем с иллюстрации 
простого подхода, аналогичного тому, который Клемперер предложил Банку Англии, прежде чем обсуж-
дать диапазон возможностей. 

6.3. Простой аукцион для двух товаров 
Предположим, существует только два класса залога: "сильный" и "слабый".4 Каждому участнику 

торгов (контрагенту) разрешается сделать несколько заявок на участие в аукционе. Каждая ставка рас-
считана на определенную сумму денег и включает в себя две процентные ставки. Одна ставка — это та, 
которую контрагент готов платить, если он берет взаймы под надежное обеспечение; а другая относится 
к заимствованию под слабое обеспечение. Эти два результата были бы взаимоисключающими. Если 
контрагент имеет или желает использовать только один тип обеспечения, ему разрешается предложить 
нулевую процентную ставку для другого типа обеспечения, который он не может или не будет использо-
вать – это гарантирует, что нежелательное обеспечение никогда не будет выбрано из этого предложе-
ния. Так, например, участник торгов мог бы предложить занять 375 миллионов фунтов стерлингов под 
5,95%, если бы ему было разрешено использовать слабое обеспечение, и 5,7%, если бы требовалось 

 
1 Рассмотрим, например, контрагента, который хочет, скажем, 300 миллионов фунтов стерлингов. Должен ли он предлагать 

300 миллионов фунтов стерлингов под каждый вид обеспечения и рисковать тем, что ему будет выделено 600 миллионов 

фунтов стерлингов? Или, чтобы избежать этого риска, должен ли он предложить 300 миллионов фунтов стерлингов под один 

вид обеспечения, но не под другой? Тогда он мог бы увидеть выделение денег под другой вид обеспечения по ставке, кото-

рую он была бы готов заплатить. Или ему следует предложить по 150 миллионов фунтов стерлингов за каждый? Что бы он ни 

делал, впоследствии он может пожалеть о том, что взял кредит под неправильный тип обеспечения, учитывая рыночные 

ставки клиринга, и/или взял слишком много или слишком мало, учитывая рыночные ставки клиринга. (Проблема не зависит 
от того, используется ли единообразное или дискриминационное ценообразование.) 

2 Центральный банк обладает достаточным институциональным авторитетом, чтобы от него нельзя было ожидать стратегиче-

ского поведения, если бы он заранее не объявил о своем правиле. 
3 Если ставки равны, Банк может выбрать, какую ставку принять. Если ставка с наибольшим профицитом дает нулевой профи-

цит, Банк может выбрать, какую долю (доли) принять. 
4 "Сильный" может соответствовать “ОМО" или "обычному" обеспечению, которое Банк Англии традиционно принимал в 

своих "операциях на открытом рынке". "Слабый" может соответствовать "более широкому" или "расширенному" обеспече-

нию, под которое Банк Англии был готов предоставить кредит в напряженных обстоятельствах, сложившихся с осени 2007 

года. 
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использовать сильное обеспечение. Он мог бы сделать повторную заявку на получение дополнитель-
ного займа в размере 500 миллионов фунтов стерлингов под 5,75%, если бы мог использовать слабое 
обеспечение, и 5,5%, если бы ему пришлось использовать сильное обеспечение. Он может сделать тре-
тью заявку на получение займа в размере 300 миллионов фунтов стерлингов под слабое обеспечение 
под 5,7% и 0% под сильное обеспечение (что будет расценено как отказ от займа под сильное обеспе-
чение в рамках этой конкретной заявки). Каждое из этих предложений было бы истолковано как Предло-
жение "или" в том смысле, что Банк принял бы самое большее одно из двух предложений, а именно то, 
которое дает заемщику более выгодную сделку с точки зрения разницы между ставкой, предлагаемой 
заемщиком, и ставкой клиринга на рынке – это избавляет участника торгов от необходимости беспоко-
иться о том, что одна из его заявок победит другую, которую он предпочел бы видеть принятой. 

 
Рисунок 6.2. Возможное распределение средств 

Источник – (Klemperer, 2008) 

Пример совокупности заявок, поданных всеми участниками торгов, проиллюстрирован на рисунке 
6.2. выше. Ставки с сильным обеспечением отображаются вертикально, а ставки со слабым обеспече-
нием – горизонтально, так что каждая точка на графике представляет парную ставку. 1 (Число рядом с 
каждой точкой – это сумма ставки в миллионах фунтов стерлингов.) Три заявки, описанные в предыду-
щем абзаце, пронумерованы жирным шрифтом. (Обратите внимание, что вертикальная ось рисунка 
"сломана", так что ставки на 330 млн фунтов стерлингов, 300 млн фунтов стерлингов и 460 млн фунтов 
стерлингов рассчитаны на 0% при сильном обеспечении, т.е. эти ставки эквивалентны традиционным 
"непарным" ставкам только при слабом обеспечении.) 

Если, например, Банк желает предоставить кредит в размере 2,5 млрд фунтов стерлингов, а в за-
явках на получение кредита в общей сложности 5,5 млрд фунтов стерлингов, то заявки на сумму 3 млрд 
фунтов стерлингов должны быть отклонены. Какие именно 3 миллиарда фунтов стерлингов будут откло-
нены, будет определяться правилом, которое Банк решил использовать при предоставлении средств. 
Возможными пакетами исключенных заявок были бы любые наборы заявок, включенные в прямоуголь-
ник, нарисованный с двумя сторонами вдоль осей и охватывающий заявки на сумму 3 миллиарда фунтов 
стерлингов. Каждый возможный прямоугольник однозначно идентифицируется парой процентных ста-
вок, соответствующих правому верхнему углу прямоугольника; ставки выше любой из этих "предельных" 
процентных ставок принимаются, в то время как ставки ниже обеих предельных ставок отклоняются. На 
рисунке 5.2. показана одна возможная пара ставок отсечения, обозначенная вертикальной линией на 
уровне 5,92% (для слабого обеспечения) и горизонтальной линией на уровне 5,65% (для сильного обес-
печения). Заявки внутри прямоугольника отклоняются, а остальные принимаются. 

 
1 Поскольку все слабые ставки выше, чем сильные, все графики опускаются ниже линии 45° – это особенность  примера с Цен-

тральным банком и не имеет значения для схемы аукциона. 
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Те заявки, для которых оба предложения превышают соответствующие ставки отсечения (то есть 
те заявки, которые находятся к северо-востоку от прямоугольника), распределяются на обеспечение, 
для которого ставка отсечения еще ниже предложения. Таким образом, заявки, которые находятся как к 
северу от прямоугольника, так и к северо-западу от диагональной линии под углом 45°, проведенной от 
правого верхнего угла прямоугольника, получают кредиты под сильное обеспечение; заявки, которые 
находятся как к востоку от прямоугольника, так и к юго-востоку от диагональной линии, получают кре-
диты под слабое обеспечение. 

Банк использует единое правило ценообразования для каждого залогового обеспечения. Таким об-
разом, все заявки, принятые под сильное обеспечение, выплачивают одинаковую минимальную про-
центную ставку (отсечение) по сильному обеспечению, а все заявки, принятые под слабое обеспечение, 
выплачивают процентную ставку по слабому обеспечению.  

Конечно, на рисунке 6.2. показана только одна из множества возможных пар ставок отсечения, ко-
торые отклонили бы заявки ровно на 3 миллиарда фунтов стерлингов. Если мы проведем линию под 
углом 45° через любую точку графика, в которой разница между процентными ставками не слишком 
велика, то, как правило, на этой линии под углом 45° будет одна точка, в которой отклоняются заявки 
ровно на 3 миллиарда фунтов стерлингов1. (Если есть более одной точки, мы выбираем наиболее юго-
западную, возможны другие правила выбора.) По мере того, как мы перемещаем линию на 45° на юго-
восток (относительно более высокие процентные ставки при слабом залоге), критическая точка, пред-
ставляющая пару предельных ставок, перемещается либо вниз, либо вправо. Все возможные пары со-
единены ступенчатой линией с наклоном вниз на рис. 6.3. 

Рисунок 6.3. Допустимые пары предельных значений 
Источник – (Klemperer, 2008) 

Каждая возможная пара отсечек на ступенчатой линии рисунка 6.3. подразумевает как разницу в 
процентных ставках, так и (путем суммирования принятых заявок ниже соответствующей линии под уг-
лом 45°) долю средств, выделенных на слабое обеспечение. По мере увеличения разницы в процентных 
ставках доля, выделяемая на слабое обеспечение, уменьшается. Используя эту информацию, мы мо-
жем построить нисходящую "кривую спроса" (ступенчатая линия) на рис. 6.3. 

(Обратите внимание, что оси на рисунке 6.3 отличаются от осей на рисунке 6.2.) 
Банк может по своему усмотрению выбрать любую точку на "кривой спроса" (эквивалентно, любой 

возможный прямоугольник на рисунках 6.2, 6.3.) после просмотра заявок. 
 

 
1 Если ровно 3 миллиарда фунтов стерлингов заявок могут быть отклонены путем отклонения целых заявок (эквивалентно, 

сумма, подлежащая принятию, может быть составлена из целых заявок), то, как правило, будет промежуток между последней 

отклоненной заявкой и первой принятой заявкой. Однако обычно предельные ставки будут нормированы, поэтому предложе-

ние будет равно спросу только в одной точке на любой линии под углом 45°. 
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7. Эпилог 
Завершая обзор событий в области применения тропической математики в экономике, хочется по-

делиться собственными впечатлениями от работы с текстами. В особенности это касается текстов, с 
авторами которых лично знаком, причем достаточно давно. В частности, это касается В.И. Данилова, 
Г.А. Кошевого, В.Л. Макарова, А.Г. Хованского, а также ряда ленинградских авторов. 

В последующие годы тропическая математика интенсивно развивалась по нескольким направле-
ниям в работах зарубежных и российских ученых, в результате чего появились многочисленные научные 
статьи, опубликованные в ведущих научных журналах, и несколько десятков монографий. Тем не менее 
применений идемпотентной математики в экономике почти нет.  

Парадоксальность ситуации заключается в том, что экономистам практически невозможно читать 
тексты, написанные математиками. Даже в тех случаях, когда математики пытаются просто объяснить, 
что такое многогранник Ньютона (Казарновский, Хованский, Эстеров, 2021), получается длинно, не очень 
понятно (даже математику из другой области). А сами математики прикладных задач обычно чураются. 
В среде математиков был и остается снобизм, мешающий заниматься приложениями. Таким был вели-
кий англичанин Г. Х. Харди таким же и наш Юрий Иванович Манин, учениками которого являются 
В.И. Данилов и А.Г. Кошевой. Они, как и автор настоящего обзора, начинали моделирования общего 
равновесия в экономике знаний или аналогичных продуктов, подчиняющихся правилам идемпотентного 
сложения. В их интерпретации знания дискретны, акцентировать внимание можно было на идемпотент-
ности или на дискретности. Они акцентировали дискретность и ушли в чистую математику, тогда как в 
работах (Козырев, 2011, 2020, 2021, 2024, акцент сделан на идемпотентности самих продуктов и связи 
с реальностью в ущерб математической технике.  

О снобизме математиков можно почитать в книге В.И. Арнольда (Арнольд, 2002) о математике и 
математиках теперь уже прошлого тысячелетия. Впрочем, и сам Владимир Игоревич, посмеиваясь над 
снобами, не считал прикладную математику (отдельной) наукой. Для него применение одной и той же 
математической техники в разных областях не казалось наукой, а зря. Практика показывает, что для 
реального успеха надо понимать и математику, и предмет, причем глубоко. 
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Abstract 
The possibilities of using tropical (idempotent) mathematics in solving economic problems where traditional 

mathematical methods do not work or work poorly are shown. Much attention is paid to works where the use of 
tropical mathematics is not limited to speeding up computational procedures, but concerns the very concept of 
the problem, its meaningful meaning. Unfortunately, there are very few such works, although the transition to 
the digital economy and the country economy would seem to give rise to the use of tropical methods, since 
digital products have suitable properties. 
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