Сравнение возможностей нейронных сетей и метода Шепарда для прогнозирования наводнений на основе обработки статистических данных

Сравнение возможностей нейронных сетей и метода Шепарда для прогнозирования наводнений на основе обработки статистических данных Сравнение возможностей нейронных сетей и метода Шепарда для прогнозирования наводнений на основе обработки статистических данных

Задача прогнозирования того или иного стихийного бедствия и сопутствующих ему проблем является ключевой во многих странах и регионах. Так как своевременное принятие соответствующих предупредительных мер помогает свести к минимуму повреждения и траты на последующее восстановление инфраструктуры, а также избегать человеческих жертв. Одним из ключевых подходов для решение подобного рода задач является математическое моделирование и анализ временных рядов. В статье рассмотрена задача прогнозирования наводнений в прибрежном городе Туапсе (Краснодарский край, Российской федерации), при этом за основу для исследований взяты данные предоставленные МЧС России. Рассмотрены алгоритмы первичной обработки данных для нивелирования помех и их корректировки для последующего анализа и использования. Представлены результаты сравнительного анализа возможностей нейросетевого моделирования, а также метода Шепарда для решения задач прогнозирования наводнений. Рассмотрены преимущества и недостатки каждого из подходов. Приведены результаты численных экспериментов, демонстрирующие особенности применения каждого из подходов, а также сделан ряд выводов на основе полученных данных.


DE-2022-04-01
604 kb

Идентификаторы статьи

  • 10.34706/DE-2022-04-01
    

Читайте также:

 

Комментарии

Нет комментариев. Будь первым, кто оставит комментарий.
Уже зарегистрированы? Войти на сайт
16.04.2025

апр 2025
Пн Вт Ср Чт Пт Сб Вс
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30